9,370 research outputs found

    Mayakovsky’s Bedbug: Revolution, Time and Utopia

    Full text link
    The article was submitted on 25.04.2017.In Russia, the very idea of a Communist revolution – from 1905 onwards – meant both hope and dread. This attitude is quite clearly shown in a very significant part of the Russian literary process, from 1908 to the beginning of the Stalin era. An obvious thread, in fact, connects Aleksandr Bogdanov (Red Star, 1908), Evgeny Zamyatin (We, 1921) and Vladimir Mayakovsky (The Bedbug, 1929): the growing awareness that the Communist revolution, as Lenin had conceived it, was little more than a model and that a model could not describe – much less forecast – a complex reality (a complex system) like a social and political one. As a result of this awareness, hope and a dark prophecy (Bogdanov) slowly turn into despair (Mayakovsky). The model is subsumed by Vladimir Mayakovsky’s dystopian satire of The Bedbug and The Bathhouse which propose a new paradigm of dystopia: a bottleneck in the flow of the information produced by blind adherence to a preconceived project that prevents the discovery and the implementation of la volonté générale in so complex a system as human society.Для периода господства революционных идей в России начала XX в. были характерны противоречивые настроения надежды и страха. Это ярко проявлялось и во многих произведениях русской литературы, начиная с 1908 г. и вплоть до сталинской эпохи. Такие представления были связующей нитью для творчества Александра Богданова (Красная Звезда, 1908), Евгения Замятина (Мы, 1921) и Владимира Маяковского (Клоп, 1929): по их изменениям можно проследить то, как в сознании людей росло убеждение, что коммунистическая революция – всего лишь абстрактная модель. А модель не может описать и, тем более, предсказать сложную реальность, включающую в себя социальную и политическую системы. Из осознания этого факта, по мнению автора, и происходит мрачное пророчество А. Богданова (соединенное с надеждой), которое затем перерастает в отчаяние у В. Маяковского. Эта модель представлена в сатире Маяковского – в «Клопе» и «Бане», в которых возникает новая парадигма антиутопии: информационная ограниченность, вызванная слепым следованием заранее заданному замыслу, препятствует открытию и внедрению volonté générale (всеобщей воли как результата ограничения людьми своих прав) в такой сложной системе как человеческое общество

    Exactly Solvable Balanced Tenable Urns with Random Entries via the Analytic Methodology

    Get PDF
    This paper develops an analytic theory for the study of some Polya urns with random rules. The idea is to extend the isomorphism theorem in Flajolet et al. (2006), which connects deterministic balanced urns to a differential system for the generating function. The methodology is based upon adaptation of operators and use of a weighted probability generating function. Systems of differential equations are developed, and when they can be solved, they lead to characterization of the exact distributions underlying the urn evolution. We give a few illustrative examples.Comment: 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12), Montreal : Canada (2012

    Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension

    Get PDF
    We consider the long time, large scale behavior of the Wigner transform W_\eps(t,x,k) of the wave function corresponding to a discrete wave equation on a 1-d integer lattice, with a weak multiplicative noise. This model has been introduced in Basile, Bernardin, and Olla to describe a system of interacting linear oscillators with a weak noise that conserves locally the kinetic energy and the momentum. The kinetic limit for the Wigner transform has been shown in Basile, Olla, and Spohn. In the present paper we prove that in the unpinned case there exists γ0>0\gamma_0>0 such that for any γ(0,γ0]\gamma\in(0,\gamma_0] the weak limit of W_\eps(t/\eps^{3/2\gamma},x/\eps^{\gamma},k), as \eps\ll1, satisfies a one dimensional fractional heat equation tW(t,x)=c^(x2)3/4W(t,x)\partial_t W(t,x)=-\hat c(-\partial_x^2)^{3/4}W(t,x) with c^>0\hat c>0. In the pinned case an analogous result can be claimed for W_\eps(t/\eps^{2\gamma},x/\eps^{\gamma},k) but the limit satisfies then the usual heat equation

    Climatic Variations in South Dakota 1900 - 1950

    Get PDF
    Most of South Dakota lies within the Great Plains of the United States. Thus, the climate of South Dakota, like that of the Great Plains, has been one of relatively little precipitation and frequent droughts. However, periods of rather high rainfall have led to considerable optimism. Likewise droughts like those of the 1930\u27s may have led to too much pessimism. What is the real picture of the variability of South Dakota climate? The purpose of this pamphlet is to help answer this question. No one knows with certainty what will happen in the future. The best indication of what can be expected in future years is indicated by past patterns of precipitation and droughts. This pattern can be pictured by a set of maps which show areas that were dry or wet and how they change from year to year. This pamphlet presents such maps for the years 1900 through 1950. The maps for 1930 to 1933 have been redrawn from those previously published. Those from 1934 to 1950 were prepared using the same method. These maps are divided by lines into arid, semi-arid, dry subhumid, moist subhumid, humid, and superhumid moisture regions. These terms were established for the United States by observing the effects of different amounts of moisture on plants in the Great Plains
    corecore