378 research outputs found

    Controlling the dynamics of an open many-body quantum system with localized dissipation

    Full text link
    We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative potential as a function of the dissipation strength observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the experiment for different parameters of the electron beam and we compare our results with a simple theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We finally demonstrate the link between our dissipative dynamics and the measurement of the density distribution of the BEC allowing for a generalized definition of the Zeno effect. Due to the high degree of control on every parameter, our system is a promising candidate for the engineering of fully governable open quantum systems

    Association of ultracold double-species bosonic molecules

    Full text link
    We report on the creation of heterospecies bosonic molecules, associated from an ultracold Bose-Bose mixture of 41K and 87Rb, by using a resonantly modulated magnetic field close to two Feshbach resonances. We measure the binding energy of the weakly bound molecular states versus the Feshbach field and compare our results to theoretical predictions. We observe the broadening and asymmetry of the association spectrum due to thermal distribution of the atoms, and a frequency shift occurring when the binding energy depends nonlinearly on the Feshbach field. A simple model is developed to quantitatively describe the association process. Our work marks an important step forward in the experimental route towards Bose-Einstein condensates of dipolar molecules.Comment: 5 pages, 4 figure

    Double species condensate with tunable interspecies interactions

    Full text link
    We produce Bose-Einstein condensates of two different species, 87^{87}Rb and 41^{41}K, in an optical dipole trap in proximity of interspecies Feshbach resonances. We discover and characterize two Feshbach resonances, located around 35 and 79 G, by observing the three-body losses and the elastic cross-section. The narrower resonance is exploited to create a double species condensate with tunable interactions. Our system opens the way to the exploration of double species Mott insulators and, more in general, of the quantum phase diagram of the two species Bose-Hubbard model.Comment: 4 pages, 4 figure

    Collisional properties of sympathetically cooled 39^{39}K

    Full text link
    We report the experimental evidence of the sympathetic cooling of 39^{39}K with 87^{87}Rb down to 1 μ\muK, obtained in a novel tight confining magnetic trap. This allowed us to perform the first direct measurement of the elastic cross section of 39^{39}K below 50 μ\muK. The result obtained for the triplet scattering length, aT=51(7)a_T = -51(7) Bohr radii, agrees with previous results derived from photoassociation spectra and from Feshbach spectroscopy of 40^{40}K.Comment: 7 pages, 4 figures, submitted to Phys. Rev.

    Observation of heteronuclear atomic Efimov resonances

    Full text link
    The Efimov effect represents a cornerstone in few-body physics. Building on the recent experimental observation with ultracold atoms, we report the first experimental signature of Efimov physics in a heteronuclear system. A mixture of 41^{41}K and 87^{87}Rb atoms was cooled to few hundred nanoKelvins and stored in an optical dipole trap. Exploiting a broad interspecies Feshbach resonance, the losses due to three-body collisions were studied as a function of the interspecies scattering length. We observe an enhancement of the three-body collisions for three distinct values of the interspecies scattering lengths, both positive and negative. We attribute the two features at negative scattering length to the existence of two kind of Efimov trimers, namely KKRb and KRbRb.Comment: 4 pages, 4 figure

    Collisional and molecular spectroscopy in an ultracold Bose-Bose mixture

    Full text link
    The route toward a Bose-Einstein condensate of dipolar molecules requires the ability to efficiently associate dimers of different chemical species and transfer them to the stable rovibrational ground state. Here, we report on recent spectroscopic measurements of two weakly bound molecular levels and newly observed narrow d-wave Feshbach resonances. The data are used to improve the collisional model for the Bose-Bose mixture 41K87Rb, among the most promising candidates to create a molecular dipolar BEC.Comment: 13 pages, 3 figure

    Board of Directors' characteristics and environmental SDGs adoption: an international study

    Get PDF
    Drivers of environmentally conscious firm behaviour have gained increasing attention over past decades. The Board of Directors holds a central role in corporate decision-making, and previous empirical evidence suggests that its characteristics could influence corporate environmental performance. This paper contributes to the literature with the first evidence of the influence certain board characteristics have on whether a firm ulti-mately supports one or more environmental SDGs. Our focus is on board size, gender diversity, board independence and CEO duality. Logistic and fractional regressions on 4417 globally listed firms highlight that board size, the share of female directors, and the share of independent directors are significant drivers of support for environmental SDGs. The results and insights revealed in this study should be helpful to policymakers, investors and corporations in evaluating the effectiveness of corporate governance characteristics and fostering corporate contributions to the 2030 Agenda

    A non-parametric algorithm for time-dependent modal analysis of civil structures and infrastructures

    Get PDF
    Vibration-based monitoring strategies have been demonstrated to be effective tools in providing - in nearly real-time - reliable information regarding the integrity of structures and infrastructure systems. However, commonly used methods for vibration analysis and modal identification are not able to capture the time variation of the modal properties during single acquisitions, hence they cannot perform dynamic identification in the presence of nonlinearities or non-stationary input excitations. To overcome this limitation, a novel non-parametric algorithm for automatic time-dependent modal analysis is hereby presented and discussed. This Enhanced Modal Identification for Long-term Integrity Assessment (EMILIA) algorithm can compute time-dependent estimations of the natural frequencies and mode shapes that can be critical to the early identification of hidden damage. The dynamic characterization of a beam-like structure in sound and damaged conditions is carried out for numerical validation purposes, allowing to evaluate the reliability of the proposed method over different scenarios and comparing its efficiency against traditional algorithms. Finally, further tests are conducted to analyse the sensitivity of the EMILIA algorithm to its main parameters and components.This work was funded by the Chilean National Agency for Research and Development (ANID), through the programme “Doctorado en el Extranjero Becas Chile, Convocatoria 2020” [PhD abroad grants programme, Becas Chile, call 2020], Folio – 72204431 [Sheet number – 72210443]. This work was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020

    An Experimental Investigation on the Effect of Exhaust Gas Recirculation in a Small-Scale Fixed Bed Biomass Boiler

    Get PDF
    Exhaust gas recirculation is a technique that allows for controlling the combustion chamber temperature and reducing the NOx and particle matter emissions. Moreover, it helps to mitigate soot formation and ash agglomeration in combustion systems. The present study investigated the effect of exhaust gas recirculation on combustion temperatures of a 140 kW underfed stoker biomass boiler. To this purpose, a wide range of operating conditions were used, collecting data regarding flue gas and fixed bed temperatures. It turned out that the recirculating ratio has a significant effect on the temperatures in the primary combustion zone, affecting the thermal gradient and the main thermal zones of the biomass combusting bed. The obtained results can be useful for lumped parameter modeling, or CFD validation purposes

    Woodchip size effect on combustion temperatures and volatiles in a small-scale fixed bed biomass boiler

    Get PDF
    Biomass combustion performance is greatly affected by the particle size distribution, which influences heat and mass transport phenomena. The present work investigates the effect of woodchip size distribution on combustion in a 140 kW underfeed stoker boiler. Three different fuel sizes were prepared, and their combustion performance was measured by monitoring temperatures inside and above the fire pit and the gas composition above the fuel bed. The gas composition was then correlated to the particle mean diameter. Although minor effects could be detected in the temperature and composition of the flue gases, a more uniform spatial distribution of volatiles was observed when employing bigger woodchips. The present results can improve the understanding of the impact of fuel size on the performance of woodchip-fired boilers and can be valuably used for numerical model validation
    corecore