31,904 research outputs found

    Nuclear shell evolution and in-medium NN interaction

    Get PDF
    We report on a quantitative study of the evolution of the nuclear shell structure, in particular, effective single-particle energies (ESPEs), based on the spin-tensor decomposition of an effective two-body shell-model interaction. While the global trend of the ESPEs is mainly due to the central term of the effective interaction, variations of shell gaps invoke various components of the in-medium NN force. From a detailed analysis of a well-fitted realistic interaction in the sdpf shell-model space, two most important contributions for the evolution of the N = 20 and N = 28 shell gaps are confirmed to be the central term and the tensor term. The role of the latter is dominant to explain the energy shift of spin-orbit partners. Spin-tensor analysis of microscopic effective interactions in sd, pf, and gds shell-model spaces, contrasted with that of the phenomenologically adjusted ones, shows no evidence of amplification of the tensor component contribution; however, it points toward the neglect of three-body forces in the present microscopic interactions

    PCN60 COSTS OF CARE FOR ELDERLY METASTATIC PROSTATE CANCER PATIENTS OVER TIME

    Get PDF

    Chaos assisted adiabatic passage

    Full text link
    We study the exact dynamics underlying stimulated Raman adiabatic passage (STIRAP) for a particle in a multi-level anharmonic system (the infinite square-well) driven by two sequential laser pulses, each with constant carrier frequency. In phase space regions where the laser pulses create chaos, the particle can be transferred coherently into energy states different from those predicted by traditional STIRAP. It appears that a transition to chaos can provide a new tool to control the outcome of STIRAP

    A Prediction of the B*_c mass in full lattice QCD

    Get PDF
    By using the Highly Improved Staggered Quark formalism to handle charm, strange and light valence quarks in full lattice QCD, and NRQCD to handle bottom valence quarks we are able to determine accurately ratios of the B meson vector-pseudoscalar mass splittings, in particular, (m(B*_c)-m(B_c))/(m(B*_s)-m(B_s)). We find this ratio to be 1.15(15), showing the `light' quark mass dependence of this splitting to be very small. Hence we predict m(B_c*) = 6.330(7)(2)(6) GeV where the first two errors are from the lattice calculation and the third from existing experiment. This is the most accurate prediction of a gold-plated hadron mass from lattice QCD to date.Comment: 4 pages, 2 figure

    A weighted reduced basis method for parabolic PDEs with random data

    Full text link
    This work considers a weighted POD-greedy method to estimate statistical outputs parabolic PDE problems with parametrized random data. The key idea of weighted reduced basis methods is to weight the parameter-dependent error estimate according to a probability measure in the set-up of the reduced space. The error of stochastic finite element solutions is usually measured in a root mean square sense regarding their dependence on the stochastic input parameters. An orthogonal projection of a snapshot set onto a corresponding POD basis defines an optimum reduced approximation in terms of a Monte Carlo discretization of the root mean square error. The errors of a weighted POD-greedy Galerkin solution are compared against an orthogonal projection of the underlying snapshots onto a POD basis for a numerical example involving thermal conduction. In particular, it is assessed whether a weighted POD-greedy solutions is able to come significantly closer to the optimum than a non-weighted equivalent. Additionally, the performance of a weighted POD-greedy Galerkin solution is considered with respect to the mean absolute error of an adjoint-corrected functional of the reduced solution.Comment: 15 pages, 4 figure

    Understanding Solidification of Polythiophene Thin Films during Spin-Coating: Effects of Spin-Coating Time and Processing Additives

    Get PDF
    Spin-coating has been used extensively in the fabrication of electronic devices; however, the effects of the processing parameters have not been fully explored. Here, we systematically characterize the effects of the spin-coating time on the microstructure evolution during semiconducting polymer solidification in an effort to establish the relationship between this parameter and the performances of the resulting polymer field-effect transistors (FETs). We found that a short spin-coating time of a few seconds dramatically improve the morphology and molecular order in a conjugated polymer thin film because the p-p stacking structures formed by the polymer molecules grow slowly and with a greater degree of order due to the residual solvent present in the wet film. The improved ordering is correlated with improved charge carrier transport in the FETs prepared from these films. We also demonstrated the effects of various processing additives on the resulting FET characteristics as well as on the film drying behavior during spin-coating. The physical properties of the additives are found to affect the film drying process and the resulting device performance.113427Ysciescopu

    Improved harmonic approximation and the 2D Ising model at TTcT\neq T_{c} and h0h\neq0

    Full text link
    We propose a new method to determine the unknown parameter associated to a self-consistent harmonic approximation. We check the validity of our technique in the context of the sine-Gordon model. As a non trivial application we consider the scaling regime of the 2D Ising model away from the critical point and in the presence of a magnetic field hh. We derive an expression that relates the approximate correlation length ξ\xi, TTcT-T_c and hh.Comment: 11 pages, Latex, 3 figures. Accepted for publication in Journal of Physics

    The Eruption from a Sigmoidal Solar Active Region on 2005 May 13

    Full text link
    This paper presents a multiwavelength study of the M8.0 flare and its associated fast halo CME that originated from a bipolar active region NOAA 10759 on 2005 May 13. The source active region has a conspicuous sigmoid structure at TRACE 171 A channel as well as in the SXI soft X-ray images, and we mainly concern ourselves with the detailed process of the sigmoid eruption as evidenced by the multiwavelength data ranging from Halpha, WL, EUV/UV, radio, and hard X-rays (HXRs). The most important finding is that the flare brightening starts in the core of the active region earlier than that of the rising motion of the flux rope. This timing clearly addresses one of the main issues in the magnetic eruption onset of sigmoid, namely, whether the eruption is initiated by an internal tether-cutting to allow the flux rope to rise upward or a flux rope rises due to a loss of equilibrium to later induce tether cutting below it. Our high time cadence SXI and Halpha data shows that the first scenario is relevant to this eruption. As other major findings, we have the RHESSI HXR images showing a change of the HXR source from a confined footpoint structure to an elongated ribbon-like structure after the flare maximum, which we relate to the sigmoid-to-arcade evolution. Radio dynamic spectrum shows a type II precursor that occurred at the time of expansion of the sigmoid and a drifting pulsating structure in the flare rising phase in HXR. Finally type II and III bursts are seen at the time of maximum HXR emission, simultaneous with the maximum reconnection rate derived from the flare ribbon motion in UV. We interpret these various observed properties with the runaway tether-cutting model proposed by Moore et al. in 2001.Comment: 10 pages, 10 figures, The Astrophysical Journal, accepted July, 200

    Above-Room-Temperature Ferromagnetism in GaSb/Mn Digital Alloys

    Full text link
    Digital alloys of GaSb/Mn have been fabricated by molecular beam epitaxy. Transmission electron micrographs showed good crystal quality with individual Mn-containing layers well resolved; no evidence of 3D MnSb precipitates was seen in as-grown samples. All samples studied exhibited ferromagnetism with temperature dependent hysteresis loops in the magnetization accompanied by metallic p-type conductivity with a strong anomalous Hall effect (AHE) up to 400 K (limited by the experimental setup). The anomalous Hall effect shows hysteresis loops at low temperatures and above room temperature very similar to those seen in the magnetization. The strong AHE with hysteresis indicates that the holes interact with the Mn spins above room temperature. All samples are metallic, which is important for spintronics applications. * To whom correspondence should be addressed. E-mail: [email protected]
    corecore