167 research outputs found

    Visual Evoked Potentials Change as Heart Rate and Carotid Pressure Change

    Full text link
    The relationship between cardiovascular activity and the brain was explored by recording visual evoked potentials from the occipital regions of the scalp during systolic and diastolic pressure (Experiment I) and during fast and slow heartbeats at systolic and diastolic pressure (Experiment II). Visual evoked potentials changed significantly as heart rate and carotid pressure fluctuated normally, and these changes were markedly different in the right and left cerebral hemispheres. Evoked potentials recorded from the right hemisphere during various cardiac events differed significantly, whereas those recorded from the left did not. In both experiments, differences in the right hemisphere were due primarily to the P1 component, which was larger at diastolic than at systolic pressure. The present findings are consistent with formulations from behavioral studies suggesting that baroreceptor activity can influence sensory intake, and suggest that hemispheric specialization may play an important role in the relationship between cardiac events, the brain and behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73146/1/j.1469-8986.1982.tb02579.x.pd

    Effects of selective serotonin reuptake inhibitor treatment on plasma oxytocin and cortisol in major depressive disorder

    Get PDF
    Background: Oxytocin is known for its capacity to facilitate social bonding, reduce anxiety and for its actions on the stress hypothalamopituitary adrenal (HPA) axis. Since oxytocin can physiologically suppress activity of the HPA axis, clinical applications of this neuropeptide have been proposed in conditions where the function of the HPA axis is dysregulated. One such condition is major depressive disorder (MDD). Dysregulation of the HPA system is the most prominent endocrine change seen with MDD, and normalizing the HPA axis is one of the major targets of recent treatments. The potential clinical application of oxytocin in MDD requires improved understanding of its relationship to the symptoms and underlying pathophysiology of MDD. Previous research has investigated potential correlations between oxytocin and symptoms of MDD, including a link between oxytocin and treatment related symptom reduction. The outcomes of studies investigating whether antidepressive treatment (pharmacological and non-pharmacological) influences oxytocin concentrations in MDD, have produced conflicting outcomes. These outcomes suggest the need for an investigation of the influence of a single treatment class on oxytocin concentrations, to determine whether there is a relationship between oxytocin, the HPA axis (e.g., oxytocin and cortisol) and MDD. Our objective was to measure oxytocin and cortisol in patients with MDD before and following treatment with selective serotonin reuptake inhibitors, SSRI. Method: We sampled blood from arterial plasma. Patients with MDD were studied at the same time twice; pre- and post- 12 weeks treatment, in an unblinded sequential design (clinicaltrials.govNCT00168493). Results: Results did not reveal differences in oxytocin or cortisol concentrations before relative to following SSRI treatment, and there were no significant relationships between oxytocin and cortisol, or these two physiological variables and psychological symptom scores, before or after treatment. Conclusions: These outcomes demonstrate that symptoms of MDD were reduced following effective treatment with an SSRI, and further, stress physiology was unlikely to be a key factor in this outcome. Further research is required to discriminate potential differences in underlying stress physiology for individuals with MDD who respond to antidepressant treatment, relative to those who experience treatment resistance.Charlotte Keating, Tye Dawood, David A Barton, Gavin W Lambert and Alan J Tilbroo

    Biochemistry and physiology of gastrointestinal somatostatin

    Full text link
    Somatostatin, a tetradecapeptide initially isolated from the ovine hypothalamus, is widely distributed throughout the gastrointestinal tract where it may act as a hormone, local chemical messenger, or neurotransmitter to elicit many physiological actions. Release of somatostatin from D cells in the gut is regulated by mechanisms that are both dependent on and independent of cAMP. In most cases somatostatin acts to inhibit the function of its target cells. It performs this action in part via pertussis-toxin-sensitive inhibitory guanine nucleotide-binding proteins that regulate adenylate cyclase activity. Other mechanisms may involve sites of action distal to intracellular second messenger systems .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44411/1/10620_2005_Article_BF01536041.pd

    Study of Cell Degranulation with Simultaneous Microscope Imaging and Capillary Electrophoresis

    No full text

    Heptadecapeptide gastrin in the vagal nerve.

    No full text

    Acute Changes in Blood Pressure Following Vascular Diseases in the Brain Stem

    No full text
    • …
    corecore