27 research outputs found

    Phase diagram for Ca_{1-x}Y_xMnO_3 type crystals

    Full text link
    We present a simple model to study the electron doped manganese perovskites. The model considers the competition between double exchange mechanism for itinerant electrons and antiferromagnetic superexchange interaction for localized electrons. It represents each Mn^{4+} ion by a spin 1/2, on which an electron can be added to produce Mn^{3+}; we include a hopping energy t, a strong intratomic interaction exchange J (in the limit J/t>>1), and an interatomic antiferromagnetic interaction K between the local spins. Using the Renormalized Perturbation Expansion and a Mean Field Approximation on the hopping terms and on the superexchange interaction we calculate the free energy. From it, the stability of the antiferromagnetic, canted, ferromagnetic, and novel spin glass phases can be determined as functions of the parameters characterizing the system. The model results can be expressed in terms of t and K for each value of the doping x in phase diagrams. The magnetization m and canting angle can also be calculated as fuctions of temperature for fixed values of doping and model parameters.Comment: 4 figure

    The effect of Coulomb interaction at ferromagnetic-paramagnetic metallic perovskite junctions

    Full text link
    We study the effect of Coulomb interactions in transition metal oxides junctions. In this paper we analyze charge transfer at the interface of a three layer ferromagnetic-paramagnetic-ferromagnetic metallic oxide system. We choose a charge model considering a few atomic planes within each layer and obtain results for the magnetic coupling between the ferromagnetic layers. For large number of planes in the paramagnetic spacer we find that the coupling oscillates with the same period as in RKKY but the amplitude is sensitive to the Coulomb energy. At small spacer thickness however, large differences may appear as function of : the number of electrons per atom in the ferromagnetics and paramagnetics materials, the dielectric constant at each component, and the charge defects at the interface plane emphasizing the effects of charge transfer.Comment: tex file and 7 figure

    Effect of disorder on the magnetic and transport properties of La_{1-x}Sr_{x}MnO_{3}

    Full text link
    We study a simplified model of the electronic structure of compounds of the type of La1−x_{1-x}Srx_xMnO3_3. The model represents each Mn4+^{4+} ion by a spin S=1/2, on which an electron can be added to produce Mn3+^{3+}. We include two strong intratomic interactions in the Hamiltonian: exchange (JJ% ) and Coulomb (UU). Finally, to represent the effect of Sr substitution by La in a simple way, we include a distribution of diagonal energies at the Mn sites. Then we use Green function techniques to calculate a mobility edge and the average density of states. We find that according to the amount of disorder and to the concentration of electrons in the system, the Fermi level can cross the mobility edge to produce a metal to insulator transition as the magnetization decreases (increase of temperature). If the disorder is large, the system remains insulating for all concentrations. Concentrations near zero or one favor the insulating state while intermediate values of concentration favor the metallic state.Comment: 11 pages, 4 figures available upon request, accepted for publication in Solid State Communication

    Electron-Doped Manganese Perovskites: The Polaronic State

    Full text link
    Using the Lanczos method in linear chains we study the ground state of the double exchange model including an antiferromagnetic super-exchange in the low concentration limit. We find that this ground state is always inhomogeneous, containig ferromagnetic polarons. The extention of the polaron spin distortion, the dispersion relation and their trapping by impurities, are studied for diferent values of the super exchange interaction and magnetic field. We also find repulsive polaron polaron interaction.Comment: 4 pages, 6 embedded figure

    Intermediate Valence Model for the Colossal Magnetoresistance in Tl_{2}Mn_{2}O_{7}

    Full text link
    The colossal magnetoresistance exhibited by Tl_{2}Mn_{2}O_{7} is an interesting phenomenon, as it is very similar to that found in perovskite manganese oxides although the compound differs both in its crystalline structure and electronic properties from the manganites. At the same time, other pyrochlore compounds, though sharing the same structure with Tl_{2}Mn_{2}O_{7}, do not exhibit the strong coupling between magnetism and transport properties found in this material. Mostly due to the absence of evidence for significant doping into the Mn-O sublattice, and the tendency of Tl to form conduction bands, the traditional double exchange mechanism mentioned in connection with manganites does not seem suitable to explain the experimental results in this case. We propose a model for Tl_{2}Mn_{2}O_{7} consisting of a lattice of intermediate valence ions fluctuating between two magnetic configurations, representing Mn-3d orbitals, hybridized with a conduction band, which we associate with Tl. This model had been proposed originally for the analysis of intermediate valence Tm compounds. With a simplified treatment of the model we obtain the electronic structure and transport properties of Tl_{2}Mn_{2}O_{7}, with good qualitative agreement to experiments. The presence of a hybridization gap in the density of states seems important to understand the reported Hall data.Comment: 8 pages + 5 postscript fig

    The periodic Anderson model from the atomic limit and FeSi

    Get PDF
    The exact Green's functions of the periodic Anderson model for U→∞U\to \infty are formally expressed within the cumulant expansion in terms of an effective cumulant. Here we resort to a calculation in which this quantity is approximated by the value it takes for the exactly soluble atomic limit of the same model. In the Kondo region a spectral density is obtained that shows near the Fermi surface a structure with the properties of the Kondo peak. Approximate expressions are obtained for the static conductivity % \sigma (T) and magnetic susceptibility χ(T)\chi (T) of the PAM, and they are employed to fit the experimental values of FeSi, a compound that behaves like a Kondo insulator with both quantities vanishing rapidly for T→0T\to 0. Assuming that the system is in the intermediate valence region, it was possible to find good agreement between theory and experiment for these two properties by employing the same set of parameters. It is shown that in the present model the hybridization is responsible for the relaxation mechanism of the conduction electrons.Comment: 26 pages and 8 figure

    Ferromagnetic Polarons in Manganites

    Full text link
    Using the Lanczos method in linear chains we study the double exchange model in the low concentration limit, including an antiferromagnetic super-exchange K. In the strong coupling limit we find that the ground state contains ferromagnetic polarons whose length is very sensitive to the value of K/t. We investigate the dispersion relation, the trapping by impurities, and the interaction between these polarons. As the overlap between polarons increases, by decreasing K/t, the effective interaction between them changes from antiferromagnetic to ferromagnetic. The scaling to the thermodynamic limit suggests an attractive interaction in the strong coupling regime (J_h > t) and no binding in the weak limit (J_h \simeq t).Comment: 12 pages, accepted in PRB, to be published in Novembe
    corecore