9,414 research outputs found
The optical counterpart of SAX J1808.4-3658, the transient bursting millisecond X-ray pulsar
A set of CCD images have been obtained during the decline of the X-ray
transient SAX J1808.4-3658 during April-June 1998. The optical counterpart has
been confirmed by several pieces of evidence. The optical flux shows a
modulation on several nights which is consistent with the established X-ray
binary orbit period of 2 hours. This optical variability is roughly in
antiphase with the weak X-ray modulation. The source mean magnitude of V=16.7
on April 18 declined rapidly after April 22. From May 2 onwards the magnitude
was more constant at around V=18.45 but by June 27 was below our sensitivity
limit. The optical decline precedes the rapid second phase of the X-ray
decrease by 3 +/- 1 days. The source has been identified on a 1974 UK Schmidt
plate at an estimated magnitude of ~20. The nature of the optical companion is
discussed.Comment: 5 pages, 3 figures; published in MNRAS, March 15th 199
Accretion column eclipses in the X-ray pulsars GX 1+4 and RX J0812.4-3114
Sharp dips observed in the pulse profiles of three X-ray pulsars (GX 1+4, RX
J0812.4-3114 and A 0535+26) have previously been suggested to arise from
partial eclipses of the emission region by the accretion column occurring once
each rotation period. We present pulse-phase spectroscopy from Rossi X-ray
Timing Explorer satellite observations of GX 1+4 and RX J0812.4-3114 which for
the first time confirms this interpretation. The dip phase corresponds to the
closest approach of the column axis to the line of sight, and the additional
optical depth for photons escaping from the column in this direction gives rise
to both the decrease in flux and increase in the fitted optical depth measured
at this phase. Analysis of the arrival time of individual dips in GX~1+4
provides the first measurement of azimuthal wandering of a neutron star
accretion column. The column longitude varies stochastically with standard
deviation 2-6 degrees depending on the source luminosity. Measurements of the
phase width of the dip both from mean pulse profiles and individual eclipses
demonstrates that the dip width is proportional to the flux. The variation is
consistent with that expected if the azimuthal extent of the accretion column
depends only upon the Keplerian velocity at the inner disc radius, which varies
as a consequence of the accretion rate Mdot.Comment: 7 pages, 5 figures, accepted by MNRAS. Included reference
Quantifying the Effect of Non-Larmor Motion of Electrons on the Pressure Tensor
In space plasma, various effects of magnetic reconnection and turbulence
cause the electron motion to significantly deviate from their Larmor orbits.
Collectively these orbits affect the electron velocity distribution function
and lead to the appearance of the "non-gyrotropic" elements in the pressure
tensor. Quantification of this effect has important applications in space and
laboratory plasma, one of which is tracing the electron diffusion region (EDR)
of magnetic reconnection in space observations. Three different measures of
agyrotropy of pressure tensor have previously been proposed, namely,
, and . The multitude of contradictory measures has
caused confusion within the community. We revisit the problem by considering
the basic properties an agyrotropy measure should have. We show that
, and are all defined based on the sum of the
principle minors (i.e. the rotation invariant ) of the pressure tensor. We
discuss in detail the problems of -based measures and explain why they may
produce ambiguous and biased results. We introduce a new measure
constructed based on the determinant of the pressure tensor (i.e. the rotation
invariant ) which does not suffer from the problems of -based
measures. We compare with other measures in 2 and 3-dimension
particle-in-cell magnetic reconnection simulations, and show that can
effectively trace the EDR of reconnection in both Harris and force-free current
sheets. On the other hand, does not show prominent peaks in
the EDR and part of the separatrix in the force-free reconnection simulations,
demonstrating that does not measure all the non-gyrotropic
effects in this case, and is not suitable for studying magnetic reconnection in
more general situations other than Harris sheet reconnection.Comment: accepted by Phys. of Plasm
Spectral variation in the X-ray pulsar GX 1+4 during a low-flux episode
The X-ray pulsar GX 1+4 was observed with the RXTE satellite for a total of
51ks between 1996 July 19 - 21. During this period the flux decreased smoothly
from an initial mean level of ~ 6 X 10^36 erg/s to a minimum of ~ 4 X 10^35
erg/s (2-60 keV, assuming a source distance of 10 kpc) before partially
recovering towards the initial level at the end of the observation.
BATSE pulse timing measurements indicate that a torque reversal took place
approximately 10 d after this observation. Both the mean pulse profile and the
photon spectrum varied significantly. The observed variation in the source may
provide important clues as to the mechanism of torque reversals.
The single best-fitting spectral model was based on a component originating
from thermal photons with kT ~ 1 keV Comptonised by a plasma of temperature kT
\~ 7 keV. Both the flux modulation with phase during the brightest interval and
the evolution of the mean spectra over the course of the observation are
consistent with variations in this model component; with, in addition, a
doubling of the column density nH contributing to the mean spectral change.
A strong flare of duration 50 s was observed during the interval of minimum
flux, with the peak flux ~ 20 times the mean level. Although beaming effects
are likely to mask the true variation in Mdot thought to give rise to the
flare, the timing of a modest increase in flux prior to the flare is consistent
with dual episodes of accretion resulting from successive orbits of a locally
dense patch of matter in the accretion disc.Comment: 8 pages, 3 figures, submitted to MNRA
Conditional sampling for barrier option pricing under the LT method
We develop a conditional sampling scheme for pricing knock-out barrier
options under the Linear Transformations (LT) algorithm from Imai and Tan
(2006). We compare our new method to an existing conditional Monte Carlo scheme
from Glasserman and Staum (2001), and show that a substantial variance
reduction is achieved. We extend the method to allow pricing knock-in barrier
options and introduce a root-finding method to obtain a further variance
reduction. The effectiveness of the new method is supported by numerical
results
Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition
In this paper, we consider the infinite-dimensional integration problem on
weighted reproducing kernel Hilbert spaces with norms induced by an underlying
function space decomposition of ANOVA-type. The weights model the relative
importance of different groups of variables. We present new randomized
multilevel algorithms to tackle this integration problem and prove upper bounds
for their randomized error. Furthermore, we provide in this setting the first
non-trivial lower error bounds for general randomized algorithms, which, in
particular, may be adaptive or non-linear. These lower bounds show that our
multilevel algorithms are optimal. Our analysis refines and extends the
analysis provided in [F. J. Hickernell, T. M\"uller-Gronbach, B. Niu, K.
Ritter, J. Complexity 26 (2010), 229-254], and our error bounds improve
substantially on the error bounds presented there. As an illustrative example,
we discuss the unanchored Sobolev space and employ randomized quasi-Monte Carlo
multilevel algorithms based on scrambled polynomial lattice rules.Comment: 31 pages, 0 figure
String Bit Models for Superstring
We extend the model of string as a polymer of string bits to the case of
superstring. We mainly concentrate on type II-B superstring, with some
discussion of the obstacles presented by not II-B superstring, together with
possible strategies for surmounting them. As with previous work on bosonic
string we work within the light-cone gauge. The bit model possesses a good deal
less symmetry than the continuous string theory. For one thing, the bit model
is formulated as a Galilei invariant theory in dimensional
space-time. This means that Poincar\'e invariance is reduced to the Galilei
subgroup in space dimensions. Naturally the supersymmetry present in the
bit model is likewise dramatically reduced. Continuous string can arise in the
bit models with the formation of infinitely long polymers of string bits. Under
the right circumstances (at the critical dimension) these polymers can behave
as string moving in dimensional space-time enjoying the full
Poincar\'e supersymmetric dynamics of type II-B superstring.Comment: 43 pages, phyzzx require
Effectiveness of Lasalocid with Solar-Dried Acid Treated and Ensiled Shelled Corn Finishing Rations
Three shelled corn storage forms (solar-dried, propionic acid-treated and ensiled) were also investigated in this trial because of the intensive interest in minimizing the energy costs required for drying or preserving high-moisture corn and to examine the relative feeding value of corn stored in these three ways. A horizontal plastic Silopress bag was used to store the ensiled shelled corn in order to gain experience with this ensiling systems
Conventionally-Dried, Solar-Dried and Acid-Treated Corn for Finishing Beef Cattle
An experiment was initiated at the James Valley Research and Extension Center, Redfield, during the summer of 1976 to determine the value of corn grain dried or preserved by different methods. A portion of the trial dealt with methods of administering vitamin A and these results will be reported at a later time
- …