10 research outputs found

    Polypropylene-based Eco-composites Filled with Agricultural Rice Hulls Waste

    Get PDF
    In this workthe properties of rice-hull-filled polypropylene (PP) composites were investigated with the purpose of enhancing adhesion between the polymer and the filler through the addition of w = 5 % PP-grafted-MA (CA). Composites containing w = 20 and 30 % rice hulls (RH), as well as composites with a certain amount of PP matrix substituted with a coupling agent, were prepared by extrusion and compression moulding. The composites’ mechanical properties were investigated through tensile and fracture tests at low and high strain rate, using the concept of linear elastic fracture mechanics. Introduction of rice hulls in the PP matrix resulted in a decreased stress at peak, together with increase of composites tensile modulus (EPP = 1013 MPa, EPP/RH (ζ = 0.70:0.30) = 1690 MPa) and modulus in flexure. Introduction of w = 5 % PP-g-MA caused 6 % and 12 % improvement in the composite tensile strength, respectively for the PP composites with w = 20 and 30 % rice hulls. Modulus in flexure for the composite PP/RH/CA (ζ = 0.65:0.30:0.05) reached Ef = 1646 MPa, which was an improvement of 52 % when compared to pure polypropylene. Kc and Gc values were determined for PP and PP-based composites. Thermal stability of PP was slightly improved by adding rice hulls

    Efect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA Matrix Polymer Composite

    Get PDF
    Polylactic acid (PLA) formulated from corn starch has a bright potential to replace the non-renewable petroleum-based plastics. The combination of PLA and natural fbre has gained interest due to its unique performance, as reported in many researches and industries. Meanwhile, rice husk produced as the by-product of rice milling can be utilised, unless it is turned completely into waste. Therefore, in the present study, the rice husk powder (RHP) was used as a fller in the PLA, so to determine the infuence of the fller loading on the mechanical properties of the PLA composite. A coupling agent was selected for treatment from two options, i.e., maleic anhydride polypropylene (MAPP) and maleic anhydride polyethylene (MAPE), by applying the agents with various loading contents, such as 2, 4 and 6 wt%. The composite was fabricated by using the hot compression machine. Both the treated and untreated RHP–PLA composites were characterised via the tensile, fexural and impact strength tests. The increase in the RHP loading content led to the decrease in the tensile and fexural strengths. The applications of the coupling agents (MAPE and MAPP) did not improve the tensile and impact strengths, but the fexural strength was enhanced

    Functionalization of Miscanthus

    No full text

    Rheology of Polymer Alloys and Blends

    No full text
    corecore