77 research outputs found
Altered monocyte activation markers in Tourette's syndrome: a case-control study
Background: Infections and immunological processes are likely to be involved in the pathogenesis of Tourette's syndrome (TS). To determine possible common underlying immunological mechanisms, we focused on innate immunity and studied markers of inflammation, monocytes, and monocyte-derived cytokines. Methods: In a cross-sectional study, we used current methods to determine the number of monocytes and levels of C-reactive protein (CRP) in 46 children, adolescents, and adult patients suffering from TS and in 43 healthy controls matched for age and sex. Tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), soluble CD14 (sCD14), IL1-receptor antagonist (IL1-ra), and serum neopterin were detected by immunoassays. Results: We found that CRP and neopterin levels and the number of monocytes were significantly higher in TS patients than in healthy controls. Serum concentrations of TNF-alpha, sIL1-ra, and sCD14 were significantly lower in TS patients. All measured values were within normal ranges and often close to detection limits. Conclusions: The present results point to a monocyte dysregulation in TS. This possible dysbalance in innate immunity could predispose to infections or autoimmune reactions
An update on the strategies in multicomponent activity monitoring within the phytopharmaceutical field
<p>Abstract</p> <p>Background</p> <p>To-date modern drug research has focused on the discovery and synthesis of single active substances. However, multicomponent preparations are gaining increasing importance in the phytopharmaceutical field by demonstrating beneficial properties with respect to efficacy and toxicity.</p> <p>Discussion</p> <p>In contrast to single drug combinations, a botanical multicomponent therapeutic possesses a complex repertoire of chemicals that belong to a variety of substance classes. This may explain the frequently observed pleiotropic bioactivity spectra of these compounds, which may also suggest that they possess novel therapeutic opportunities. Interestingly, considerable bioactivity properties are exhibited not only by remedies that contain high doses of phytochemicals with prominent pharmaceutical efficacy, but also preparations that lack a sole active principle component. Despite that each individual substance within these multicomponents has a low molar fraction, the therapeutic activity of these substances is established via a potentialization of their effects through combined and simultaneous attacks on multiple molecular targets. Although beneficial properties may emerge from such a broad range of perturbations on cellular machinery, validation and/or prediction of their activity profiles is accompanied with a variety of difficulties in generic risk-benefit assessments. Thus, it is recommended that a comprehensive strategy is implemented to cover the entirety of multicomponent-multitarget effects, so as to address the limitations of conventional approaches.</p> <p>Summary</p> <p>An integration of standard toxicological methods with selected pathway-focused bioassays and unbiased data acquisition strategies (such as gene expression analysis) would be advantageous in building an interaction network model to consider all of the effects, whether they were intended or adverse reactions.</p
The cerebrospinal fluid proteome in HIV infection: change associated with disease severity
<p>Abstract</p> <p>Background</p> <p>Central nervous system (CNS) infection is a nearly universal feature of untreated systemic HIV infection with a clinical spectrum that ranges from chronic asymptomatic infection to severe cognitive and motor dysfunction. Analysis of cerebrospinal fluid (CSF) has played an important part in defining the character of this evolving infection and response to treatment. To further characterize CNS HIV infection and its effects, we applied advanced high-throughput proteomic methods to CSF to identify novel proteins and their changes with disease progression and treatment.</p> <p>Results</p> <p>After establishing an <it>accurate mass and time </it>(AMT) tag database containing 23,141 AMT tags for CSF peptides, we analyzed 91 CSF samples by LC-MS from 12 HIV-uninfected and 14 HIV-infected subjects studied in the context of initiation of antiretroviral therapy and correlated abundances of identified proteins a) within and between subjects, b) with all other proteins across the entire sample set, and c) with "external" CSF biomarkers of infection (HIV RNA), immune activation (neopterin) and neural injury (neurofilament light chain protein, NFL). We identified a mean of 2,333 +/- 328 (SD) peptides covering 307 +/-16 proteins in the 91 CSF sample set. Protein abundances differed both between and within subjects sampled at different time points and readily separated those with and without HIV infection. Proteins also showed inter-correlations across the sample set that were associated with biologically relevant dynamic processes. One-hundred and fifty proteins showed correlations with the external biomarkers. For example, using a threshold of cross correlation coefficient (Pearson's) ≤ -0.3 and ≥0.3 for potentially meaningful relationships, a total of 99 proteins correlated with CSF neopterin (43 negative and 56 positive correlations) and related principally to neuronal plasticity and survival and to innate immunity. Pathway analysis defined several networks connecting the identified proteins, including one with amyloid precursor protein as a central node.</p> <p>Conclusions</p> <p>Advanced CSF proteomic analysis enabled the identification of an array of novel protein changes across the spectrum of CNS HIV infection and disease. This initial analysis clearly demonstrated the value of contemporary state-of-the-art proteomic CSF analysis as a discovery tool in HIV infection with likely similar application to other neurological inflammatory and degenerative diseases.</p
Cerebrospinal fluid levels of glial marker YKL-40 strongly associated with axonal injury in HIV infection
Background: HIV-1 infects the central nervous system (CNS) shortly after transmission. This leads to a chronic
intrathecal immune activation. YKL-40, a biomarker that mainly reflects activation of astroglial cells, has not been
thoroughly investigated in relation to HIV. The objective of our study was to characterize cerebrospinal fluid (CSF)
YKL-40 in chronic HIV infection, with and without antiretroviral treatment (ART).
Methods: YKL-40, neopterin, and the axonal marker neurofilament light protein (NFL) were analyzed with ELISA in
archived CSF samples from 120 HIV-infected individuals (85 untreated neuroasymptomatic patients, 7 with HIVassociated dementia, and 28 on effective ART) and 39 HIV-negative controls.
Results: CSF YKL-40 was significantly higher in patients with HIV-associated dementia compared to all other
groups. It was also higher in untreated neuroasymptomatic individuals with CD4 cell count < 350 compared to
controls. Significant correlations were found between CSF YKL-40 and age (r = 0.38, p < 0.001), CD4 (r = − 0.36, p < 0.
001), plasma HIV RNA (r = 0.35, p < 0.001), CSF HIV RNA (r = 0.35, p < 0.001), CSF neopterin (r = 0.40, p < 0.001), albumin
ratio (r = 0.44, p < 0.001), and CSF NFL (r = 0.71, p < 0.001). Age, CD4 cell count, albumin ratio, and CSF HIV RNA were
found as independent predictors of CSF YKL-40 concentrations in multivariable analysis. In addition, CSF YKL-40 was
revealed as a strong independent predictor of CSF NFL together with age, CSF neopterin, and CD4 cell count.
Conclusions: CSF YKL-40 is a promising biomarker candidate for understanding the pathogenesis of HIV in the CNS.
The strong correlation between CSF YKL-40 and NFL suggests a pathogenic association between astroglial activation
and axonal injury, and implies its utility in assessing the prognostic value of YKL-40
Neopterin production in SCID mice injected with human peripheral blood mononuclear cells
Intraperitoneal transfer of peripheral blood mononuclear cells (PBMC) from human EBV+ donors into severe combined immunodeficiency (SCID) mice is a suitable model for studying some aspects of lymphomagenesis and immune activation. Neopterin is a soluble immune marker which was found to be a useful indicator for immune activation processes in humans, e.g. to monitor immunological complications in allograft recipients or to predict prognosis in HIV-infected individuals. In contrast, this pteridine compound is normally synthesized in murine organism in only very low amounts. The measurement of neopterin concentrations in serum and urine should be feasible in SCID mice reconstituted with human PBMC. In this study, we examined the usability of this experimental model for monitoring human T cell activation by neopterin measurements. The production of neopterin by SCID mice after injection of freshly isolated human PBMC, purified B or T cells and cultured Epstein-Barr virus (EBV)+ lymphoblastoid cells (LCL) was determined. It was found that neopterin can be detected early after injecting SCID mice with PBMC, whereas injection of purified human T or B cells did not result in neopterin production. Highest neopterin levels were detected in mice treated with LCL cells when developing lymphoma. We discuss the possible sources of neopterin along this process and its usefulness in this model
Lower intracellular concentration of cryoprotectants after vitrification than after slow freezing despite exposure to higher concentration of cryoprotectant solutions.
STUDY QUESTION: What is the intracellular concentration of cryoprotectant (ICCP) in mouse zygotes during vitrification (VIT) and slow-freezing (SLF) cryopreservation procedures? SUMMARY ANSWER: Contrary to common beliefs, it was observed that the ICCP in vitrified zygotes is lower than after SLF, although the solutions used in VIT contain higher concentrations of cryoprotectants (CPs). WHAT IS KNOWN ALREADY: To reduce the likelihood of intracellular ice crystal formation, which has detrimental effects on cell organelles and membranes, VIT was introduced as an alternative to SLF to cryopreserve embryos and gametes. Combined with high cooling and warming rates, the use of high concentrations of CPs favours an intracellular environment that supports and maintains the transition from a liquid to a solid glass-like state devoid of crystals. Although the up-to-date publications are reassuring in terms of obstetric and perinatal outcomes after VIT, a fear about exposing gametes and embryos to high amounts of CPs that exceed 3-4-fold those found in SLF was central to a debate initiated by advocates of SLF procedures. STUDY DESIGN, SIZE, DURATION: Two experimental set-ups were applied. The objective of a first study was to determine the ICCP at the end of the exposure steps to the CP solutions with our VIT protocol (n = 31). The goal of the second investigation was to compare the ICCP between VIT (n = 30) and SLF (n = 30). All experiments were performed in triplicates using mouse zygotes. The study took place at the GIGA-Research Institute of the University of Liege. PARTICIPANTS/MATERIALS, SETTING, METHODS: Cell volume is modified by changes in extracellular osmolarity. Hence, we estimated the final ICCP after the incubation steps in the VIT solutions by exposing the cells to sucrose (SUC) solutions with defined molarities. The ICCP was calculated from the SUC concentration that produced no change in cell volume, i.e. when intra- and extracellular osmolarities were equivalent. Cell volume was monitored by microscopic cinematography. ICCP was compared between SLF and VIT based on the principle that a high ICCP lowers the probability of (re)crystallization during warming but increases the probability of over-swelling of the cell due to fast inflow of water. The survival rates of mouse zygotes after SLF or VIT were compared using either (i) various warming rates or (ii) various concentrations of SUC in the warming dilution medium. MAIN RESULTS AND THE ROLE OF CHANCE: The ICCP in mouse zygotes during the VIT procedure prior to plunging them in liquid nitrogen was approximately 2.14 M, i.e. one-third of the concentration in the VIT solution. After SLF, the warming rate did not affect the zygote survival rate. In contrast, only 3/30 vitrified zygotes survived when warmed slowly but as many as 30/30 zygotes survived when warming was fast (>20 000 degrees C/min). Vitrified zygotes showed significantly higher survival rates than slow-frozen zygotes when they were placed directly in the culture medium or in solutions containing low concentrations of SUC (P < 0.01). These two experiments demonstrate a lower ICCP after VIT than after SLF. LIMITATIONS, REASONS FOR CAUTION: The results should not be directly extrapolated to other stages of development or to other species due to possible differences in membrane permeability to water and CPs. WIDER IMPLICATIONS OF THE FINDINGS: The low ICCP we observed after VIT removes the concern about high ICCP after VIT, at least in murine zygotes and helps to explain the observed efficiency and lack of toxicity of VIT. STUDY FUNDING / COMPETING INTEREST(S): The study was funded by the FNRS (National Funds for Scientific Research). The authors declare that they have no competing interests
- …