1,508 research outputs found

    Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation

    Full text link
    Gottesman, Kitaev and Preskill have formulated a way of encoding a qubit into an oscillator such that the qubit is protected against small shifts (translations) in phase space. The idea underlying this encoding is that error processes of low rate can be expanded into small shift errors. The qubit space is defined as an eigenspace of two mutually commuting displacement operators SpS_p and SqS_q which act as large shifts/translations in phase space. We propose and analyze the approximate creation of these qubit states by coupling the oscillator to a sequence of ancilla qubits. This preparation of the states uses the idea of phase estimation where the phase of the displacement operator, say SpS_p, is approximately determined. We consider several possible forms of phase estimation. We analyze the performance of repeated and adapative phase estimation as the simplest and experimentally most viable schemes given a realistic upper-limit on the number of photons in the oscillator. We propose a detailed physical implementation of this protocol using the dispersive coupling between a transmon ancilla qubit and a cavity mode in circuit-QED. We provide an estimate that in a current experimental set-up one can prepare a good code state from a squeezed vacuum state using 88 rounds of adapative phase estimation, lasting in total about 4μ4 \mu sec., with 94%94\% (heralded) chance of success.Comment: 24 pages, 15 figures. Some minor improvements to text and figures. Some of the numerical data has been replaced by more accurate simulations. The improved simulation shows that the code performs better than originally anticipate

    Texturing polymer surfaces by transfer casting

    Get PDF
    A technique for fabricating textured surfaces on polymers without altering their surface chemistries is described. A surface of a fluorocarbon polymer is exposed to a beam of ions to texture it. The polymer which is to be surface-roughened is then cast over the textured surface of the fluorocarbon polymer. After curing, the cast polymer is peeled off the textured fluorocarbon polymer, and the peeled off surface has negative replica of the textured surface. The microscopic surface texture provides large surface areas for adhesive bonding. In cardiovascular prosthesis applications the surfaces are relied on for the development of a thin adherent well nourished thrombus

    Development of a qualification standard for adhesives used in hybrid microcircuits

    Get PDF
    Improved qualification standards and test procedures for adhesives used in microelectronic packaging are developed. The test methods in specification for the Selection and Use of Organic Adhesives in Hybrid Microcircuits are reevaluated versus industry and government requirements. Four electrically insulative and four electrically conductive adhesives used in the assembly of hybrid microcircuits are selected to evaluate the proposed revised test methods. An estimate of the cost to perform qualification testing of an adhesive to the requirements of the revised specification is also prepared

    Direct thrust measurement of a 30-cm ion thruster

    Get PDF
    A direct thrust measurement of a 30-cm diameter ion thruster was accomplished by means of a laser interferometer thrust stand. The thruster was supported in a pendulum manner by three 3.65-m long wires. Electrical power was provided by means of 18 mercury filled pots. A movable 23-button planar probe rake was used to determine thrust loss due to ion beam divergence. Values of thrust, thrust loss due to ion beam divergence, and thrust loss due to multiple ionization were measured for ion beam currents ranging from 0.5 A to 2.5 A. Measured thrust values indicate an accuracy of approximately 1% and are in good agreement with thrust values calculated by indirect measurements

    Time-resolved X-ray microscopy of nanoparticle aggregates under oscillatory shear

    Full text link
    Of all current detection techniques with nanometer resolution, only X-ray microscopy allows imaging nanoparticles in suspension. Can it also be used to investigate structural dynamics? When studying response to mechanical stimuli, the challenge lies in applying them with precision comparable to spatial resolution. In the first shear experiments performed in an X-ray microscope, we accomplished this by inserting a piezo actuator driven shear cell into the focal plane of a scanning transmission X-ray microscope (STXM). Thus shear-induced reorganization of magnetite nanoparticle aggregates could be demonstrated in suspension. As X-ray microscopy proves suitable for studying structural change, new prospects open up in physics at small length scales.Comment: submitted to J. Synchrot. Radia

    Status of a five-centimeter-diameter ion thruster technology program

    Get PDF
    Prototype auxiliary propulsion subsystem with isolated single tank propellant feed system and 5-cm-diameter ion thruste

    Potential biomedical applications of ion beam technology

    Get PDF
    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants

    Strong Enhancement of the Critical Current at the Antiferromagnetic Transition in ErNi2B2C Single Crystals

    Get PDF
    We report on transport and magnetization measurements of the critical current density Jc in ErNi2B2C single crystals that show strongly enhanced vortex pinning at the Neel temperature TN and low applied fields. The height of the observed Jc peak decreases with increasing magnetic field in clear contrast with that of the peak effect found at the upper critical field. We also performed the first angular transport measurements of Jc ever conducted on this compound. They reveal the correlated nature of this pinning enhancement, which we attribute to the formation of antiphase boundaries at TN.Comment: 3 figure
    corecore