1,406 research outputs found
Cloud-Chamber Study of the Production and Decay of Strange Particles
Out of 1242 decay events observed in a magnetic cloud chamber array triggered on penetrating showers, a total of 54 associated V-particle pairs has been obtained. All the associations observed are consistent with the "strangeness" selection rules. A statistical analysis of the numbers of double and single events has been used to obtain rough estimates of the fractions of neutral K particles and neutral hyperons which decay by "invisible" modes, and of the relative frequencies of occurrence of various production processes. The main uncertainties in the resulting values are discussed in detail
Cloud-Chamber Investigation of Charged V Particles
An analysis of 84 charged V events obtained during two years of operation of a vertical magnetic cloud-chamber array is presented. The particular features of interest which are studied in detail are the distribution of P*, the momentum of the charged secondary in the rest system of the primary, and the possible existence of a component of short lifetime (i.e., τ<5×10^-10 sec). The P* distribution from 19 slow, accurately measurable positive events is shown to imply that the large majority of these events arise from one or more two-body decays from primaries of mass approximately equal to that of the τ meson. One case turns out to be inconsistent with this interpretation, and is presumed to represent a three-body decay. The P* distribution from 6 slow, accurately measurable negative events is consistent with a single two-body decay having a P* value of about 200 Mev/c. This suggests the existence of a negative counterpart to the well-known θ0 particle, though the statistics are much too poor to permit any strong conclusion. The lifetime analysis provides strong evidence for the existence of a negative component of lifetime equal to or less than (1.3±0.6)×10^-10 sec. The transverse momentum distribution for these short-lived events is shown to suggest a two-body decay with a P* value of 201±12 Mev/c
ExploreNEOs I: Description and first results from the Warm Spitzer NEO Survey
We have begun the ExploreNEOs project in which we observe some 700 Near Earth
Objects (NEOs) at 3.6 and 4.5 microns with the Spitzer Space Telescope in its
Warm Spitzer mode. From these measurements and catalog optical photometry we
derive albedos and diameters of the observed targets. The overall goal of our
ExploreNEOs program is to study the history of near-Earth space by deriving the
physical properties of a large number of NEOs. In this paper we describe both
the scientific and technical construction of our ExploreNEOs program. We
present our observational, photometric, and thermal modeling techniques. We
present results from the first 101 targets observed in this program. We find
that the distribution of albedos in this first sample is quite broad, probably
indicating a wide range of compositions within the NEO population. Many objects
smaller than one kilometer have high albedos (>0.35), but few objects larger
than one kilometer have high albedos. This result is consistent with the idea
that these larger objects are collisionally older, and therefore possess
surfaces that are more space weathered and therefore darker, or are not subject
to other surface rejuvenating events as frequently as smaller NEOs.Comment: AJ in pres
Do Proto-Jovian Planets Drive Outflows?
We discuss the possibility that gaseous giant planets drive strong outflows
during early phases of their formation. We consider the range of parameters
appropriate for magneto-centrifugally driven stellar and disk outflow models
and find that if the proto-Jovian planet or accretion disk had a magnetic field
of >~ 10 Gauss and moderate mass inflow rates through the disk of less than
10^-7 M_J/yr that it is possible to drive an outflow. Estimates based both on
scaling from empirical laws observed in proto-stellar outflows and the
magneto-centrigugal disk and stellar+disk wind models suggest that winds with
mass outflow rates of 10^-8 M_J/yr and velocities of order ~ 20 km/s could be
driven from proto-Jovian planets. Prospects for detection and some implications
for the formation of the solar system are briefly discussed.Comment: AAS Latex, accepted for Ap
Composition of the L5 Mars Trojans: Neighbors, not Siblings
Mars is the only terrestrial planet known to have Tro jan (co-orbiting)
asteroids, with a confirmed population of at least 4 objects. The origin of
these objects is not known; while several have orbits that are stable on
solar-system timescales, work by Rivkin et al. (2003) showed they have
compositions that suggest separate origins from one another. We have obtained
infrared (0.8-2.5 micron) spectroscopy of the two largest L5 Mars Tro jans, and
confirm and extend the results of Rivkin et al. (2003). We suggest that the
differentiated angrite meteorites are good spectral analogs for 5261 Eureka,
the largest Mars Trojan. Meteorite analogs for 101429 1998 VF31 are more varied
and include primitive achondrites and mesosiderites.Comment: 14 manuscript pages, 1 table, 6 figures. To be published in Icarus.
See companion paper 0709.1921 by Trilling et a
ExploreNEOs. II. The Accuracy of the Warm Spitzer Near-Earth Object Survey
We report on results of observations of near-Earth objects (NEOs) performed with the NASA Spitzer Space Telescope as part of our ongoing (2009-2011) Warm Spitzer NEO survey ("ExploreNEOs"), the primary aim of which is to provide sizes and albedos of some 700 NEOs. The emphasis of the work described here is an assessment of the overall accuracy of our survey results, which are based on a semi-empirical generalized model of asteroid thermal emission. The NASA Spitzer Space Telescope has been operated in the so-called Warm Spitzer mission phase since the cryogen was depleted in 2009 May, with the two shortest-wavelength channels, centered at 3.6 μm and 4.5 μm, of the Infrared Array Camera continuing to provide valuable data. The set of some 170 NEOs in our current Warm Spitzer results catalog contains 28 for which published taxonomic classifications are available, and 14 for which relatively reliable published diameters and albedos are available. A comparison of the Warm Spitzer results with previously published results ("ground truth"), complemented by a Monte Carlo error analysis, indicates that the rms Warm Spitzer diameter and albedo errors are ±20% and ±50%, respectively. Cases in which agreement with results from the literature is worse than expected are highlighted and discussed; these include the potential spacecraft target 138911 2001 AE_2. We confirm that 1.4 appears to be an appropriate overall default value for the relative reflectance between the V band and the Warm Spitzer wavelengths, for use in correction of the Warm Spitzer fluxes for reflected solar radiation
ExploreNEOs. III. Physical Characterization of 65 Potential Spacecraft Target Asteroids
Space missions to near-Earth objects (NEOs) are being planned at all major space agencies, and recently a manned mission to an NEO was announced as a NASA goal. Efforts to find and select suitable targets (plus backup targets) are severely hampered by our lack of knowledge of the physical properties of dynamically favorable NEOs. In particular, current mission scenarios tend to favor primitive low-albedo objects. For the vast majority of NEOs, the albedo is unknown. Here we report new constraints on the size and albedo of 65 NEOs with rendezvous Δv <7 km s^(–1). Our results are based on thermal-IR flux data obtained in the framework of our ongoing (2009-2011) ExploreNEOs survey using NASA's "Warm-Spitzer" space telescope. As of 2010 July 14, we have results for 293 objects in hand (including the 65 low-Δv NEOs presented here); before the end of 2011, we expect to have measured the size and albedo of ~700 NEOs (including probably ~160 low-Δv NEOs). While there are reasons to believe that primitive volatile-rich materials are universally low in albedo, the converse need not be true: the orbital evolution of some dark objects likely has caused them to lose their volatiles by coming too close to the Sun. For all our targets, we give the closest perihelion distance they are likely to have reached (using orbital integrations from Marchi et al. 2009) and corresponding upper limits on the past surface temperature. Low-Δv objects for which both albedo and thermal history may suggest a primitive composition include (162998) 2001 SK162, (68372) 2001 PM9, and (100085) 1992 UY4
- …
