1,582 research outputs found
Anomalous Lattice Response at the Mott Transition in a Quasi-2D Organic Conductor
Discontinuous changes of the lattice parameters at the Mott metal-insulator
transition are detected by high-resolution dilatometry on deuterated crystals
of the layered organic conductor -(BEDT-TTF)Cu[N(CN)]Br.
The uniaxial expansivities uncover a striking and unexpected anisotropy,
notably a zero-effect along the in-plane c-axis along which the electronic
interactions are relatively strong. A huge thermal expansion anomaly is
observed near the end-point of the first-order transition line enabling to
explore the critical behavior with very high sensitivity. The analysis yields
critical fluctuations with an exponent 0.8 0.15
at odds with the novel criticality recently proposed for these materials
[Kagawa \textit{et al.}, Nature \textbf{436}, 534 (2005)]. Our data suggest an
intricate role of the lattice degrees of freedom in the Mott transition for the
present materials.Comment: 4 pages, 4 figure
Frustration and glassiness in spin models with cavity-mediated interactions
We show that the effective spin-spin interaction between three-level atoms
confined in a multimode optical cavity is long-ranged and sign-changing, like
the RKKY interaction; therefore, ensembles of such atoms subject to frozen-in
positional randomness can realize spin systems having disordered and frustrated
interactions. We argue that, whenever the atoms couple to sufficiently many
cavity modes, the cavity-mediated interactions give rise to a spin glass. In
addition, we show that the quantum dynamics of cavity-confined spin systems is
that of a Bose-Hubbard model with strongly disordered hopping but no on-site
disorder; this model exhibits a random-singlet glass phase, absent in
conventional optical-lattice realizations. We briefly discuss experimental
signatures of the realizable phases.Comment: 5 pages, 2 figure
Responses of carbon dioxide flux and plant biomass to water table drawdown in a treed peatland in northern Alberta: a climate change perspective
Northern peatland ecosystems represent large carbon (C) stocks that are susceptible to changes such as accelerated mineralization due to water table lowering expected under a climate change scenario. During the growing seasons (1 May to 31 October) of 2011 and 2012 we monitored CO2 fluxes and plant biomass along a microtopographic gradient (hummocks-hollows) in an undisturbed dry continental boreal treed bog (control) and a nearby site that was drained (drained) in 2001. Ten years of drainage in the bog significantly increased coverage of shrubs at hummocks and lichens at hollows. Considering measured hummock coverage and including tree incremental growth, we estimate that the control site was a sink of −92 in 2011 and −70 g C m−2 in 2012, while the drained site was a source of 27 and 23 g C m−2 over the same years. We infer that, drainage-induced changes in vegetation growth led to increased biomass to counteract a portion of soil carbon losses. These results suggest that spatial variability (microtopography) and changes in vegetation community in boreal peatlands will affect how these ecosystems respond to lowered water table potentially induced by climate chang
Ferromagnetism in Correlated Electron Systems: Generalization of Nagaoka's Theorem
Nagaoka's theorem on ferromagnetism in the Hubbard model with one electron
less than half filling is generalized to the case where all possible
nearest-neighbor Coulomb interactions (the density-density interaction ,
bond-charge interaction , exchange interaction , and hopping of double
occupancies ) are included. It is shown that for ferromagnetic exchange
coupling () ground states with maximum spin are stable already at finite
Hubbard interaction . For non-bipartite lattices this requires a hopping
amplitude . For vanishing one obtains as in
Nagaoka's theorem. This shows that the exchange interaction is important
for stabilizing ferromagnetism at finite . Only in the special case
the ferromagnetic state is stable even for , provided the lattice allows
the hole to move around loops.Comment: 13 pages, uuencoded postscript, includes 1 table and 2 figure
Determining ethylene group disorder levels in -(BEDT-TTF)Cu[N(CN)]Br
We present a detailed structural investigation of the organic superconductor
-(BEDT-TTF)Cu[N(CN)]Br at temperatures from 9 to 300 K.
Anomalies in the dependence of the lattice parameters are associated with a
glass-like transition previously reported at = 77 K. From structure
refinements at 9, 100 and 300 K, the orthorhombic crystalline symmetry, space
group {\it Pnma}, is established at all temperatures. Further, we extract the
dependence of the occupation factor of the eclipsed conformation of the
terminal ethylene groups of the BEDT-TTF molecule. At 300 K, we find 67(2) %,
with an increase to 97(3) % at 9 K. We conclude that the glass-like transition
is not primarily caused by configurational freezing-out of the ethylene groups
Effects of Next-Nearest-Neighbor Hopping on the Hole Motion in an Antiferromagnetic Background
In this paper we study the effect of next-nearest-neighbor hopping on the
dynamics of a single hole in an antiferromagnetic (N\'{e}el) background. In the
framework of large dimensions the Green function of a hole can be obtained
exactly. The exact density of states of a hole is thus calculated in large
dimensions and on a Bethe lattice with large coordination number. We suggest a
physically motivated generalization to finite dimensions (e.g., 2 and 3). In
we present also the momentum dependent spectral function. With varying
degree, depending on the underlying lattice involved, the discrete spectrum for
holes is replaced by a continuum background and a few resonances at the low
energy end. The latter are the remanents of the bound states of the
model. Their behavior is still largely governed by the parameters and .
The continuum excitations are more sensitive to the energy scales and
.Comment: To appear in Phys. Rev. B, Revtex, 23 pages, 10 figures available on
request from [email protected]
Resistivity studies under hydrostatic pressure on a low-resistance variant of the quasi-2D organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br: quest for intrinsic scattering contributions
Resistivity measurements have been performed on a low (LR)- and high
(HR)-resistance variant of the kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br superconductor.
While the HR sample was synthesized following the standard procedure, the LR
crystal is a result of a somewhat modified synthesis route. According to their
residual resistivities and residual resistivity ratios, the LR crystal is of
distinctly superior quality. He-gas pressure was used to study the effect of
hydrostatic pressure on the different transport regimes for both variants. The
main results of these comparative investigations are (i) a significant part of
the inelastic-scattering contribution, which causes the anomalous rho(T)
maximum in standard HR crystals around 90 K, is sample dependent, i.e.
extrinsic in nature, (ii) the abrupt change in rho(T) at T* approx. 40 K from a
strongly temperature-dependent behavior at T > T* to an only weakly T-dependent
rho(T) at T < T* is unaffected by this scattering contribution and thus marks
an independent property, most likely a second-order phase transition, (iii)
both variants reveal a rho(T) proportional to AT^2 dependence at low
temperatures, i.e. for T_c < T < T_0, although with strongly sample-dependent
coefficients A and upper bounds for the T^2 behavior measured by T_0. The
latter result is inconsistent with the T^2 dependence originating from coherent
Fermi-liquid excitations.Comment: 8 pages, 6 figure
Propagation of a hole on a Neel background
We analyze the motion of a single hole on a N\'eel background, neglecting
spin fluctuations. Brinkman and Rice studied this problem on a cubic lattice,
introducing the retraceable-path approximation for the hole Green's function,
exact in a one-dimensional lattice. Metzner et al. showed that the
approximationalso becomes exact in the infinite-dimensional limit. We introduce
a new approach to this problem by resumming the Nagaoka expansion of the
propagator in terms of non-retraceable skeleton-paths dressed by
retraceable-path insertions. This resummation opens the way to an almost
quantitative solution of the problemin all dimensions and, in particular sheds
new light on the question of the position of the band-edges. We studied the
motion of the hole on a double chain and a square lattice, for which deviations
from the retraceable-path approximation are expected to be most pronounced. The
density of states is mostly adequately accounted for by the
retra\-ce\-able-path approximation. Our band-edge determination points towards
an absence of band tails extending to the Nagaoka energy in the spectrums of
the double chain and the square lattice. We also evaluated the spectral density
and the self-energy, exhibiting k-dependence due to finite dimensionality. We
find good agreement with recent numerical results obtained by Sorella et al.
with the Lanczos spectra decoding method. The method we employ enables us to
identify the hole paths which are responsible for the various features present
in the density of states and the spectral density.Comment: 26 pages,Revte
Plaquette operators used in the rigorous study of ground-states of the Periodic Anderson Model in dimensions
The derivation procedure of exact ground-states for the periodic Anderson
model (PAM) in restricted regions of the parameter space and D=2 dimensions
using plaquette operators is presented in detail. Using this procedure, we are
reporting for the first time exact ground-states for PAM in 2D and finite value
of the interaction, whose presence do not require the next to nearest neighbor
extension terms in the Hamiltonian. In order to do this, a completely new type
of plaquette operator is introduced for PAM, based on which a new localized
phase is deduced whose physical properties are analyzed in detail. The obtained
results provide exact theoretical data which can be used for the understanding
of system properties leading to metal-insulator transitions, strongly debated
in recent publications in the frame of PAM. In the described case, the lost of
the localization character is connected to the break-down of the long-range
density-density correlations rather than Kondo physics.Comment: 34 pages, 5 figure
Hole motion in the Ising antiferromagnet: an application of the recursion method
We study hole motion in the Ising antiferromagnet using the recursion method.
Using the retraceable path approximation we find the hole's Green's function as
well as its wavefunction for arbitrary values of . The effect of small
transverse interaction also is taken into account. Our results provide some
additional insight into the self-consistent Born approximation.Comment: 8 pages, RevTex, no figures. Accepted for publication in Phys.Rev.
- …
