1,508 research outputs found
Infra-red fixed points in supersymmetry
Model independent constraints on supersymmetric models emerge when certain
couplings are drawn towards their infra-red (quasi) fixed points in the course
of their renormalization group evolution. The general principles are first
reviewed and the conclusions for some recent studies of theories with R-parity
and baryon and lepton number violations are summarized.Comment: 5 pages Latex with 2 figures embedded as eps files Talk given at
WHEPP6, Chennai, India, January 3-15, 2000, to appear in special issue of
Praman
Modeling Porous Dust Grains with Ballistic Aggregates. II. Light Scattering Properties
We study the light scattering properties of random ballistic aggregates
constructed in Shen et al. (Paper I). Using the discrete-dipole-approximation,
we compute the scattering phase function and linear polarization for random
aggregates with various sizes and porosities, and with two different
compositions: 100% silicate and 50% silicate-50% graphite. We investigate the
dependence of light scattering properties on wavelength, cluster size and
porosity using these aggregate models. We find that while the shape of the
phase function depends mainly on the size parameter of the aggregates, the
linear polarization depends on both the size parameter and the porosity of the
aggregates, with increasing degree of polarization as the porosity increases.
Contrary to previous studies, we argue that monomer size has negligible effects
on the light scattering properties of ballistic aggregates, as long as the
constituent monomer is smaller than the incident wavelength up to
2*pi*a_0/lambda\sim 1.6 where a_0 is the monomer radius. Previous claims for
such monomer size effects are in fact the combined effects of size parameter
and porosity. Finally, we present aggregate models that can reproduce the phase
function and polarization of scattered light from the AU Mic debris disk and
from cometary dust, including the negative polarization observed for comets at
scattering angles 160<theta<180 deg. These aggregates have moderate porosities,
P\sim 0.6, and are of sub-micron-size for the debris disk case, or micron-size
for the comet case.Comment: Submitted to ApJ. Scattering properties can be downloaded at
http://www.astro.princeton.edu/~draine/SDJ2009.html Target geometries are at
http://www.astro.princeton.edu/~draine/agglom.htm
Current Renormalisation Constants with an O(a)-improved Fermion Action
Using chiral Ward identities, we determine the renormalisation constants of
bilinear quark operators for the Sheikholeslami-Wohlert action lattice at
beta=6.2. The results are obtained with a high degree of accuracy. For the
vector current renormalisation constant we obtain Z_V=0.817(2)(8), where the
first error is statistical and the second is due to mass dependence of Z_V.
This is close to the perturbative value of 0.83. For the axial current
renormalisation constant we obtain Z_A = 1.045(+10 -14), significantly higher
than the value obtained in perturbation theory. This is shown to reduce the
difference between lattice estimates and the experimental values for the
pseudoscalar meson decay constants, but a significant discrepancy remains. The
ratio of pseudoscalar to scalar renormalisation constants, Z_P/Z_S, is less
well determined, but seems to be slightly lower than the perturbative value.Comment: 8 pages uuencoded compressed postscript file. Article to be submitted
to Phys.Rev.
The BATSE experiment on the Compton Gamma Ray Observatory: Status and some early results
The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO) is a sensitive all-sky detector system. It consists of eight uncollimated detectors at the corners of the spacecraft which have a total energy range of 15 keV to 100 MeV. The primary objective of BATSE is the detection, location, and study of gamma ray bursts and other transient sources. The instrement also has considerable capability for the study of pulsars, solar flares, and other discrete high energy sources. The experiment is now in full operation, detecting about one gamma ray burst per day. A brief description of the on-orbit performance of BATSE is presented, along with examples of early results from some of the gamma ray bursts
BATSE Gamma-Ray Burst Line Search: IV. Line Candidates from the Visual Search
We evaluate the significance of the line candidates identified by a visual
search of burst spectra from BATSE's Spectroscopy Detectors. None of the
candidates satisfy our detection criteria: an F-test probability less than
10^-4 for a feature in one detector and consistency among the detectors which
viewed the burst. Most of the candidates are not very significant, and are
likely to be fluctuations. Because of the expectation of finding absorption
lines, the search was biased towards absorption features. We do not have a
quantitative measure of the completeness of the search which would enable a
comparison with previous missions. Therefore a more objective computerized
search has begun.Comment: 18 pages AASTEX 4.0; 4 POSTSCRIPT figures on request from
[email protected]
Infrared Fixed Point Structure in Minimal Supersymmetric Standard Model with Baryon and Lepton Number Violation
We study in detail the renomalization group evolution of Yukawa couplings and
soft supersymmetry breaking trilinear couplings in the minimal supersymmetric
standard model with baryon and lepton number violation. We obtain the exact
solutions of these equations in a closed form, and then depict the infrared
fixed point structure of the third generation Yukawa couplings and the highest
generation baryon and lepton number violating couplings. Approximate analytical
solutions for these Yukawa couplings and baryon and lepton number violating
couplings, and the soft supersymmetry breaking couplings are obtained in terms
of their initial values at the unification scale. We then numerically study the
infrared fixed surfaces of the model, and illustrate the approach to the fixed
points.Comment: 16 pages REVTeX, figures embedded as epsfigs, replaced with version
to appear in Physical Review D, minor typographical errors eliminated and
references reordered, figures correcte
Secondary gamma-ray production in a coded aperture mask
The application of the coded aperture mask to high energy gamma-ray astronomy will provide the capability of locating a cosmic gamma-ray point source with a precision of a few arc-minutes above 20 MeV. Recent tests using a mask in conjunction with drift chamber detectors have shown that the expected point spread function is achieved over an acceptance cone of 25 deg. A telescope employing this technique differs from a conventional telescope only in that the presence of the mask modifies the radiation field in the vicinity of the detection plane. In addition to reducing the primary photon flux incident on the detector by absorption in the mask elements, the mask will also be a secondary radiator of gamma-rays. The various background components in a CAMTRAC (Coded Aperture Mask Track Chamber) telescope are considered. Monte-Carlo calculations are compared with recent measurements obtained using a prototype instrument in a tagged photon beam line
Operating characteristics of a prototype high energy gamma-ray telescope
The field of gamma-ray astronomy in the energy range from ten to several hundred MeV is severely limited by the angular resolution that can be achieved by present instruments. The identification of some of the point sources found by the COS-B mission and the resolution of detailed structure existing in those sources may depend on the development of a new class of instrument. The coded aperture mask telescope, used successfully at X-ray energies hold the promise of being such an instrument. A prototype coded aperture telescope was operated in a tagged photon beam ranging in energy from 23 to 123 MeV. The purpose of the experiment was to demonstrate the feasibility of operating a coded aperture mask telescope in this energy region. Some preliminary results and conclusions drawn from some of the data resulting from this experiment are presented
The Relationship between the Optical Depth of the 9.7 micron Silicate Absorption Feature and Infrared Differential Extinction in Dense Clouds
We have examined the relationship between the optical depth of the 9.7 micron
silicate absorption feature (tau_9.7) and the near-infrared color excess,
E(J-Ks) in the Serpens, Taurus, IC 5146, Chameleon I, Barnard 59, and Barnard
68 dense clouds/cores. Our data set, based largely on Spitzer IRS spectra,
spans E(J-Ks)=0.3 to 10 mag (corresponding to visual extinction between about 2
and 60 mag.). All lines of sight show the 9.7 micron silicate feature. Unlike
in the diffuse ISM where a tight linear correlation between the 9.7 micron
silicate feature optical depth and the extinction (Av) is observed, we find
that the silicate feature in dense clouds does not show a monotonic increase
with extinction. Thus, in dense clouds, tau_9.7 is not a good measure of total
dust column density. With few exceptions, the measured tau_9.7 values fall well
below the diffuse ISM correlation line for E(J-Ks) > 2 mag (Av >12 mag). Grain
growth via coagulation is a likely cause of this effect.Comment: 11 pages including 2 figures, 1 table. Accepted for publication in
ApJ Letters, 23 July 200
Nonminimal Supersymmetric Standard Model with Baryon and Lepton Number Violation
We carry out a comprehensive analysis of the nonminimal supersymmetric
standard model (NMSSM) with baryon and lepton number violation. We catalogue
the baryon and lepton number violating dimension four and five operators of the
model. We then study the renormalization group evolution and infrared stable
fixed points of the Yukawa couplings and the soft supersymmetry breaking
trilinear couplings of this model with baryon and lepton number (and R-parity)
violation involving the heaviest generations. We show analytically that in the
Yukawa sector of the NMSSM there is only one infrared stable fixed point. This
corresponds to a non-trivial fixed point for the top-, bottom-quark Yukawa
couplings and the violating coupling , and a trivial one
for all other couplings. All other possible fixed points are either unphysical
or unstable in the infrared region. We also carry out an analysis of the
renormalization group equations for the soft supersymmetry breaking trilinear
couplings, and determine the corresponding fixed points for these couplings. We
then study the quasi-fixed point behaviour, both of the third generation Yukawa
couplings and the baryon number violating coupling, and those of the soft
supersymmetry breaking trilinear couplings. From the analysis of the fixed
point behaviour, we obtain upper and lower bounds on the baryon number
violating coupling , as well as on the soft supersymmetry
breaking trilinear couplings. Our analysis shows that the infrared fixed point
behavior of NMSSM with baryon and lepton number violation is similar to that of
MSSM.Comment: 35 pages, Revtex, 6 eps fig
- …
