6 research outputs found

    The Relationship Between Obesity and Amputation-free Survival in Patients Undergoing Lower-limb Revascularisation for Chronic Limb-threatening Ischaemia: A Retrospective Cohort Study

    No full text
    BackgroundThe obesity paradox is a well-documented phenomenon in cardiovascular disease, however it remains poorly understood. We aimed to investigate the relationship between body mass (as measured by body mass index [BMI]) and 1-year amputation-free survival (AFS) for patients undergoing lower limb revascularisation for chronic limb-threatening ischaemia (CLTI).MethodsA retrospective analysis was undertaken of all consecutive patients undergoing lower limb revascularisation for CLTI at the Leicester Vascular Institute between February 2018–19. Baseline demographics and outcomes were collected using electronic records. BMI was stratified using the World Health Organization criteria. One-year AFS (composite of major amputation/death) was the primary outcome. Kaplan-Meier survival analysis and adjusted Cox's proportional hazard models were used to compare groups to patients of normal mass.ResultsOne-hundred and ninety patients were included. Overall, no difference was identified in 1-year AFS across all groups (pooled P = 0.335). Compared to patients with normal BMI (n = 66), obese patients (n = 43) had a significantly lower adjusted combined risk of amputation/death (aHR 0.39, 95% CI 0.16–0.92, P = 0.032), however no significant differences were observed for overweight (aHR 0.89, 95% CI 0.47–1.70, P = 0.741), morbidly obese (aHR 1.15, 95% CI 0.41–3.20, P = 0.797) and underweight individuals (aHR 1.86, 95% CI 0.56–6.20, P = 0.314).ConclusionsIn the context of CLTI, obesity is potentially associated with favourable amputation-free survival at 1 year, compared to normal body mass. The results of this study support the notion of an obesity paradox existing within CLTI and question whether current guidance on weight management requires a more patient-specific approach.</div

    Measuring Abdominal Circumference and Skeletal Muscle From a Single Cross-Sectional Computed Tomography Image: A Step-by-Step Guide for Clinicians Using National Institutes of Health ImageJ.

    No full text
    Diagnostic computed tomography (CT) scans provide numerous opportunities for body composition analysis, including quantification of abdominal circumference, abdominal adipose tissues (subcutaneous, visceral, and intermuscular), and skeletal muscle (SM). CT scans are commonly performed for diagnostic purposes in clinical settings, and methods for estimating abdominal circumference and whole-body SM mass from them have been reported. A supine abdominal circumference is a valid measure of waist circumference (WC). The valid correlation between a single cross-sectional CT image (slice) at third lumbar (L3) for abdominal SM and whole-body SM is also well established. Sarcopenia refers to the age-associated decreased in muscle mass and function. A single dimensional definition of sarcopenia using CT images that includes only assessment of low whole-body SM has been validated in clinical populations and significantly associated with negative outcomes. However, despite the availability and precision of SM data from CT scans and the relationship between these measurements and clinical outcomes, they have not become a routine component of clinical nutrition assessment. Lack of time, training, and expense are potential barriers that prevent clinicians from fully embracing this technique. This tutorial presents a systematic, step-by-step guide to quickly quantify abdominal circumference as a proxy for WC and SM using a cross-sectional CT image from a regional diagnostic CT scan for clinical identification of sarcopenia. Multiple software options are available, but this tutorial uses ImageJ, a free public-domain software developed by the National Institutes of Health

    Selecting portable ankle/toe brachial pressure index systems for a peripheral arterial disease population screening programme: A systematic review, clinical evaluation exercise, and consensus process.

    No full text
    Objective To provide an overview of systems available for peripheral arterial disease (PAD) screening, together with respective accuracies and a clinical evaluation to identify a system suitable for use in a community screening programme. Methods A systematic review of the diagnostic accuracy of six ankle brachial pressure index (ABPI) and toe brachial pressure index (TBPI) devices deemed to be portable, which were Conformité Européenne (CE) marked, and were automated or semi-automated was carried out compared with gold standard handheld Doppler and duplex ultrasound. The devices were MESI-ABPI-MD, Huntleigh Dopplex Ability, Huntleigh ABPI and TBPI systems, Systoe TBPI system, and BlueDop. Seven databases (MEDLINE, EMBASE, Scopus, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Register of Controlled Trials (CENTRAL), and Cumulative Index to Nursing and Allied Health Literature (CINAHL)) were searched, and 11 studies were identified as eligible for review. This was followed by hands on clinical evaluation by abdominal aortic aneurysm (AAA) screening staff (n = 39). During this, devices were demonstrated to staff which they then tested on volunteers and gave feedback using pre-designed questionnaires on their suitability for use in a screening programme. Finally, accuracy data and staff preferences were combined during a consensus conference that was held between study and screening staff to determine the most appropriate device to use in a community screening programme. Results Generally, the evaluated systems have a moderate level of sensitivity and a high level of specificity: Dopplex ability sensitivity 20% – 70%, specificity 86% – 96%; MESI sensitivity 57% – 74%, specificity 85% – 99%; BlueDop sensitivity 95%, specificity 89%; and Systoe sensitivity 71%, specificity 77%. Clinical evaluation by screening staff identified a preference for the MESI system. The consensus conference concluded that the MESI device was a good candidate for use in a community PAD screening programme. Conclusion The MESI system is a good candidate to consider for community PAD screening.</p

    Over-expressed, N-terminally truncated BRAF is detected in the nucleus of cells with nuclear phosphorylated MEK and ERK.

    No full text
    BRAF is a cytoplasmic protein kinase, which activates the MEK-ERK signalling pathway. Deregulation of the pathway is associated with the presence of BRAF mutations in human cancer, the most common being V600E BRAF, although structural rearrangements, which remove N-terminal regulatory sequences, have also been reported. RAF-MEK-ERK signalling is normally thought to occur in the cytoplasm of the cell. However, in an investigation of BRAF localisation using fluorescence microscopy combined with subcellular fractionation of Green Fluorescent Protein (GFP)-tagged proteins expressed in NIH3T3 cells, surprisingly, we detected N-terminally truncated BRAF (ΔBRAF) in both nuclear and cytoplasmic compartments. In contrast, ΔCRAF and full-length, wild-type BRAF (WTBRAF) were detected at lower levels in the nucleus while full-length V600EBRAF was virtually excluded from this compartment. Similar results were obtained using ΔBRAF tagged with the hormone-binding domain of the oestrogen receptor (hbER) and with the KIAA1549-ΔBRAF translocation mutant found in human pilocytic astrocytomas. Here we show that GFP-ΔBRAF nuclear translocation does not involve a canonical Nuclear Localisation Signal (NLS), but is suppressed by N-terminal sequences. Nuclear GFP-ΔBRAF retains MEK/ERK activating potential and is associated with the accumulation of phosphorylated MEK and ERK in the nucleus. In contrast, full-length GFP-WTBRAF and GFP-V600EBRAF are associated with the accumulation of phosphorylated ERK but not phosphorylated MEK in the nucleus. These data have implications for cancers bearing single nucleotide variants or N-terminal deleted structural variants of BRAF

    Assessment of breath volatile organic compounds in acute cardiorespiratory breathlessness: a protocol describing a prospective real-world observational study.

    Get PDF
    INTRODUCTION: Patients presenting with acute undifferentiated breathlessness are commonly encountered in admissions units across the UK. Existing blood biomarkers have clinical utility in distinguishing patients with single organ pathologies but have poor discriminatory power in multifactorial presentations. Evaluation of volatile organic compounds (VOCs) in exhaled breath offers the potential to develop biomarkers of disease states that underpin acute cardiorespiratory breathlessness, owing to their proximity to the cardiorespiratory system. To date, there has been no systematic evaluation of VOC in acute cardiorespiratory breathlessness. The proposed study will seek to use both offline and online VOC technologies to evaluate the predictive value of VOC in identifying common conditions that present with acute cardiorespiratory breathlessness. METHODS AND ANALYSIS: A prospective real-world observational study carried out across three acute admissions units within Leicestershire. Participants with self-reported acute breathlessness, with a confirmed primary diagnosis of either acute heart failure, community-acquired pneumonia and acute exacerbation of asthma or chronic obstructive pulmonary disease will be recruited within 24 hours of admission. Additionally, school-age children admitted with severe asthma will be evaluated. All participants will undergo breath sampling on admission and on recovery following discharge. A range of online technologies including: proton transfer reaction mass spectrometry, gas chromatography ion mobility spectrometry, atmospheric pressure chemical ionisation-mass spectrometry and offline technologies including gas chromatography mass spectroscopy and comprehensive two-dimensional gas chromatography-mass spectrometry will be used for VOC discovery and replication. For offline technologies, a standardised CE-marked breath sampling device (ReCIVA) will be used. All recruited participants will be characterised using existing blood biomarkers including C reactive protein, brain-derived natriuretic peptide, troponin-I and blood eosinophil levels and further evaluated using a range of standardised questionnaires, lung function testing, sputum cell counts and other diagnostic tests pertinent to acute disease. ETHICS AND DISSEMINATION: The National Research Ethics Service Committee East Midlands has approved the study protocol (REC number: 16/LO/1747). Integrated Research Approval System (IRAS) 198921. Findings will be presented at academic conferences and published in peer-reviewed scientific journals. Dissemination will be facilitated via a partnership with the East Midlands Academic Health Sciences Network and via interaction with all UK-funded Medical Research Council and Engineering and Physical Sciences Research Council molecular pathology nodes. TRIAL REGISTRATION NUMBER: NCT03672994

    Cognitive and psychiatric symptom trajectories 2–3 years after hospital admission for COVID-19: a longitudinal, prospective cohort study in the UK

    No full text
    Background: COVID-19 is known to be associated with increased risks of cognitive and psychiatric outcomes after the acute phase of disease. We aimed to assess whether these symptoms can emerge or persist more than 1 year after hospitalisation for COVID-19, to identify which early aspects of COVID-19 illness predict longer-term symptoms, and to establish how these symptoms relate to occupational functioning. Methods: The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a prospective, longitudinal cohort study of adults (aged ≥18 years) who were hospitalised with a clinical diagnosis of COVID-19 at participating National Health Service hospitals across the UK. In the C-Fog study, a subset of PHOSP-COVID participants who consented to be recontacted for other research were invited to complete a computerised cognitive assessment and clinical scales between 2 years and 3 years after hospital admission. Participants completed eight cognitive tasks, covering eight cognitive domains, from the Cognitron battery, in addition to the 9-item Patient Health Questionnaire for depression, the Generalised Anxiety Disorder 7-item scale, the Functional Assessment of Chronic Illness Therapy Fatigue Scale, and the 20-item Cognitive Change Index (CCI-20) questionnaire to assess subjective cognitive decline. We evaluated how the absolute risks of symptoms evolved between follow-ups at 6 months, 12 months, and 2–3 years, and whether symptoms at 2–3 years were predicted by earlier aspects of COVID-19 illness. Participants completed an occupation change questionnaire to establish whether their occupation or working status had changed and, if so, why. We assessed which symptoms at 2–3 years were associated with occupation change. People with lived experience were involved in the study. Findings: 2469 PHOSP-COVID participants were invited to participate in the C-Fog study, and 475 participants (191 [40·2%] females and 284 [59·8%] males; mean age 58·26 [SD 11·13] years) who were discharged from one of 83 hospitals provided data at the 2–3-year follow-up. Participants had worse cognitive scores than would be expected on the basis of their sociodemographic characteristics across all cognitive domains tested (average score 0·71 SD below the mean [IQR 0·16–1·04]; p<0·0001). Most participants reported at least mild depression (263 [74·5%] of 353), anxiety (189 [53·5%] of 353), fatigue (220 [62·3%] of 353), or subjective cognitive decline (184 [52·1%] of 353), and more than a fifth reported severe depression (79 [22·4%] of 353), fatigue (87 [24·6%] of 353), or subjective cognitive decline (88 [24·9%] of 353). Depression, anxiety, and fatigue were worse at 2–3 years than at 6 months or 12 months, with evidence of both worsening of existing symptoms and emergence of new symptoms. Symptoms at 2–3 years were not predicted by the severity of acute COVID-19 illness, but were strongly predicted by the degree of recovery at 6 months (explaining 35·0–48·8% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); by a biocognitive profile linking acutely raised D-dimer relative to C-reactive protein with subjective cognitive deficits at 6 months (explaining 7·0–17·2% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); and by anxiety, depression, fatigue, and subjective cognitive deficit at 6 months. Objective cognitive deficits at 2–3 years were not predicted by any of the factors tested, except for cognitive deficits at 6 months, explaining 10·6% of their variance. 95 of 353 participants (26·9% [95% CI 22·6–31·8]) reported occupational change, with poor health being the most common reason for this change. Occupation change was strongly and specifically associated with objective cognitive deficits (odds ratio [OR] 1·51 [95% CI 1·04–2·22] for every SD decrease in overall cognitive score) and subjective cognitive decline (OR 1·54 [1·21–1·98] for every point increase in CCI-20). Interpretation: Psychiatric and cognitive symptoms appear to increase over the first 2–3 years post-hospitalisation due to both worsening of symptoms already present at 6 months and emergence of new symptoms. New symptoms occur mostly in people with other symptoms already present at 6 months. Early identification and management of symptoms might therefore be an effective strategy to prevent later onset of a complex syndrome. Occupation change is common and associated mainly with objective and subjective cognitive deficits. Interventions to promote cognitive recovery or to prevent cognitive decline are therefore needed to limit the functional and economic impacts of COVID-19. Funding: National Institute for Health and Care Research Oxford Health Biomedical Research Centre, Wolfson Foundation, MQ Mental Health Research, MRC-UK Research and Innovation, and National Institute for Health and Care Research.</p
    corecore