1,310 research outputs found
Multiple Domain Associations within the Arabidopsis Immune Receptor RPP1 Regulate the Activation of Programmed Cell Death
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Upon recognition of pathogen virulence effectors, plant nucleotide-binding leucine-rich
repeat (NLR) proteins induce defense responses including localized host cell death. In an
effort to understand the molecular mechanisms leading to this response, we examined the
Arabidopsis thaliana NLR protein RECOGNITION OF PERONOSPORA PARASITICA1
(RPP1), which recognizes the Hyaloperonospora arabidopsidis effector ARABIDOPSIS
THALIANA RECOGNIZED1 (ATR1). Expression of the N-terminus of RPP1, including the
Toll/interleukin-1 receptor (TIR) domain (“N-TIR”), elicited an effector-independent cell
death response, and we used allelic variation in TIR domain sequences to define the key
residues that contribute to this phenotype. Further biochemical characterization indicated
that cell death induction was correlated with N-TIR domain self-association. In addition,
we demonstrated that the nucleotide-binding (NB)-ARC1 region of RPP1 self-associates
and plays a critical role in cell death activation, likely by facilitating TIR:TIR interactions.
Structural homology modeling of the NB subdomain allowed us to identify a putative oligomerization
interface that was shown to influence NB-ARC1 self-association. Significantly,
full-length RPP1 exhibited effector-dependent oligomerization and, although mutations at
the NB-ARC1 oligomerization interface eliminated cell death induction, RPP1 self-association
was unaffected, suggesting that additional regions contribute to oligomerization.
Indeed, the leucine-rich repeat domain of RPP1 also self-associates, indicating that multiple
interaction interfaces exist within activated RPP1 oligomers. Finally, we observed numerous
intramolecular interactions that likely function to negatively regulate RPP1, and present
a model describing the transition to an active NLR protein
Derivation of Boltzmann Principle
We present a derivation of Boltzmann principle
based on classical mechanical models of thermodynamics. The argument is based
on the heat theorem and can be traced back to the second half of the nineteenth
century with the works of Helmholtz and Boltzmann. Despite its simplicity, this
argument has remained almost unknown. We present it in a modern, self-contained
and accessible form. The approach constitutes an important link between
classical mechanics and statistical mechanics
Frustration - how it can be measured
A misfit parameter is used to characterize the degree of frustration of
ordered and disordered systems. It measures the increase of the ground-state
energy due to frustration in comparison with that of a relevant reference
state. The misfit parameter is calculated for various spin-glass models. It
allows one to compare these models with each other. The extension of this
concept to other combinatorial optimization problems with frustration, e.g.
p-state Potts glasses, graph-partitioning problems and coloring problems is
given.Comment: 10 pages, 1 table, no figures, uses revtex.st
Comparison of three commercial sparse-matrix crystallization screens
Sparse-matrix sampling using commercially available crystallization screen kits has become the most popular way of determining the preliminary crystallization conditions for macromolecules. In this study, the efficiency of three commercial screening kits, Crystal Screen and Crystal Screen 2 (Hampton Research), Wizard Screens I and II (Emerald BioStructures) and Personal Structure Screens 1 and 2 (Molecular Dimensions), has been compared using a set of 19 diverse proteins. 18 proteins yielded crystals using at least one crystallization screen. Surprisingly, Crystal Screens and Personal Structure Screens showed dramatically different results, although most of the crystallization formulations are identical as listed by the manufacturers. Higher molecular weight polyethylene glycols and mixed precipitants were found to be the most effective precipitants in this study
Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase
The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 ( unit-cell parameters a = b = 136.83, c = 99.82 angstrom, gamma = 120 degrees). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 angstrom resolution using the laboratory X-ray source and are suitable for crystal structure determination
Crystallization and preliminary X-ray diffraction studies of FHA domains of Dun1 and Rad53 protein kinases
Forkhead-associated (FHA) domains are modular protein–protein interaction domains of ~130 amino acids present in numerous signalling proteins. FHA-domain-dependent protein interactions are regulated by phosphorylation of target proteins and FHA domains may be multifunctional phosphopeptide-recognition modules. FHA domains of the budding yeast cell-cycle checkpoint protein kinases Dun1p and Rad53p have been crystallized. Crystals of the Dun1-FHA domain exhibit the symmetry of the space group P6122 or P6522, with unit-cell parameters a = b = 127.3, c = 386.3 Å; diffraction data have been collected to 3.1 Å resolution on a synchrotron source. Crystals of the N-terminal FHA domain (FHA1) of Rad53p diffract to 4.0 Å resolution on a laboratory X-ray source and have Laue-group symmetry 4/mmm, with unit-cell parameters a = b = 61.7, c = 104.3 Å
Shopping centre siting and modal choice in Belgium: a destination based analysis
Although modal split is only one of the elements considered in decision-making on new shopping malls, it remarkably often arises in arguments of both proponents and opponents. Today, this is also the case in the debate on the planned development of three major shopping malls in Belgium. Inspired by such debates, the present study focuses on the impact of the location of shopping centres on the travel mode choice of the customers. Our hypothesis is that destination-based variables such as embeddedness in the urban fabric, accessibility and mall size influence the travel mode choice of the visitors. Based on modal split data and location characteristics of seventeen existing shopping centres in Belgium, we develop a model for a more sustainable siting policy. The results show a major influence of the location of the shopping centre in relation to the urban form, and of the size of the mall. Shopping centres that are part of a dense urban fabric, measured through population density, are less car dependent. Smaller sites will attract more cyclists and pedestrians. Interestingly, our results deviate significantly from the figures that have been put forward in public debates on the shopping mall issue in Belgium
Decoherent histories analysis of the relativistic particle
The Klein-Gordon equation is a useful test arena for quantum cosmological
models described by the Wheeler-DeWitt equation. We use the decoherent
histories approach to quantum theory to obtain the probability that a free
relativistic particle crosses a section of spacelike surface. The decoherence
functional is constructed using path integral methods with initial states
attached using the (positive definite) ``induced'' inner product between
solutions to the constraint equation. The notion of crossing a spacelike
surface requires some attention, given that the paths in the path integral may
cross such a surface many times, but we show that first and last crossings are
in essence the only useful possibilities. Different possible results for the
probabilities are obtained, depending on how the relativistic particle is
quantized (using the Klein-Gordon equation, or its square root, with the
associated Newton-Wigner states). In the Klein-Gordon quantization, the
decoherence is only approximate, due to the fact that the paths in the path
integral may go backwards and forwards in time. We compare with the results
obtained using operators which commute with the constraint (the ``evolving
constants'' method).Comment: 51 pages, plain Te
On the Quasiparticle Description of Lattice QCD Thermodynamics
We propose a novel quasiparticle interpretation of the equation of state of
deconfined QCD at finite temperature. Using appropriate thermal masses, we
introduce a phenomenological parametrization of the onset of confinement in the
vicinity of the predicted phase transition. Lattice results of the energy
density, the pressure and the interaction measure of pure SU(3) gauge theory
are excellently reproduced. We find a relationship between the thermal energy
density of the Yang-Mills vacuum and the chromomagnetic condensate _T.
Finally, an extension to QCD with dynamical quarks is discussed. Good agreement
with lattice data for 2, 2+1 and 3 flavour QCD is obtained. We also present the
QCD equation of state for realistic quark masses.Comment: 20 pages, 10 eps figure
- …
