278 research outputs found
Universal deformation rings for the symmetric group S_4
Let k be an algebraically closed field of characteristic 2, and let W be the
ring of infinite Witt vectors over k. Let S_4 denote the symmetric group on 4
letters. We determine the universal deformation ring R(S_4,V) for every
kS_4-module V which has stable endomorphism ring k and show that R(S_4,V) is
isomorphic to either k, or W[t]/(t^2,2t), or the group ring W[Z/2]. This gives
a positive answer in this case to a question raised by the first author and
Chinburg whether the universal deformation ring of a representation of a finite
group with stable endomorphism ring k is always isomorphic to a subquotient
ring of the group ring over W of a defect group of the modular block associated
to the representation.Comment: 12 pages, 2 figure
Universal deformation rings and tame blocks
Let k be an algebraically closed field of positive characteristic, and let W
be the ring of infinite Witt vectors over k. Suppose G is a finite group and B
is a block of kG of infinite tame representation type. We find all finitely
generated kG-modules V that belong to B and whose endomorphism ring is
isomorphic to k and determine the universal deformation ring R(G,V) for each of
these modules.Comment: 14 page
Large n limit of Gaussian random matrices with external source, Part III: Double scaling limit
We consider the double scaling limit in the random matrix ensemble with an
external source \frac{1}{Z_n} e^{-n \Tr({1/2}M^2 -AM)} dM defined on Hermitian matrices, where is a diagonal matrix with two eigenvalues of equal multiplicities. The value is critical since the eigenvalues
of accumulate as on two intervals for and on one
interval for . These two cases were treated in Parts I and II, where
we showed that the local eigenvalue correlations have the universal limiting
behavior known from unitary random matrix ensembles. For the critical case
new limiting behavior occurs which is described in terms of Pearcey
integrals, as shown by Br\'ezin and Hikami, and Tracy and Widom. We establish
this result by applying the Deift/Zhou steepest descent method to a -matrix valued Riemann-Hilbert problem which involves the construction of a
local parametrix out of Pearcey integrals. We resolve the main technical issue
of matching the local Pearcey parametrix with a global outside parametrix by
modifying an underlying Riemann surface.Comment: 36 pages, 9 figure
Exact solution of the six-vertex model with domain wall boundary condition. Critical line between ferroelectric and disordered phases
This is a continuation of the papers [4] of Bleher and Fokin and [5] of
Bleher and Liechty, in which the large asymptotics is obtained for the
partition function of the six-vertex model with domain wall boundary
conditions in the disordered and ferroelectric phases, respectively. In the
present paper we obtain the large asymptotics of on the critical line
between these two phases.Comment: 22 pages, 6 figures, to appear in the Journal of Statistical Physic
Convergence of random zeros on complex manifolds
We show that the zeros of random sequences of Gaussian systems of polynomials
of increasing degree almost surely converge to the expected limit distribution
under very general hypotheses. In particular, the normalized distribution of
zeros of systems of m polynomials of degree N, orthonormalized on a regular
compact subset K of C^m, almost surely converge to the equilibrium measure on K
as the degree N goes to infinity.Comment: 16 page
The Julia sets and complex singularities in hierarchical Ising models
We study the analytical continuation in the complex plane of free energy of
the Ising model on diamond-like hierarchical lattices. It is known that the
singularities of free energy of this model lie on the Julia set of some
rational endomorphism related to the action of the Migdal-Kadanoff
renorm-group. We study the asymptotics of free energy when temperature goes
along hyperbolic geodesics to the boundary of an attractive basin of . We
prove that for almost all (with respect to the harmonic measure) geodesics the
complex critical exponent is common, and compute it
Double scaling limits of random matrices and minimal (2m,1) models: the merging of two cuts in a degenerate case
In this article, we show that the double scaling limit correlation functions
of a random matrix model when two cuts merge with degeneracy (i.e. when
for arbitrary values of the integer ) are the same as the
determinantal formulae defined by conformal models. Our approach
follows the one developed by Berg\`{e}re and Eynard in \cite{BergereEynard} and
uses a Lax pair representation of the conformal models (giving
Painlev\'e II integrable hierarchy) as suggested by Bleher and Eynard in
\cite{BleherEynard}. In particular we define Baker-Akhiezer functions
associated to the Lax pair to construct a kernel which is then used to compute
determinantal formulae giving the correlation functions of the double scaling
limit of a matrix model near the merging of two cuts.Comment: 37 pages, 4 figures. Presentation improved, typos corrected.
Published in Journal Of Statistical Mechanic
Level spacing statistics of classically integrable systems -Investigation along the line of the Berry-Robnik approach-
By extending the approach of Berry and Robnik, the limiting level spacing
distribution of a system consisting of infinitely many independent components
is investigated. The limiting level spacing distribution is characterized by a
single monotonically increasing function of the level spacing
. Three cases are distinguished: (i) Poissonian if ,
(ii) Poissonian for large , but possibly not for small if
, and (iii) sub-Poissonian if .
This implies that, even when energy-level distributions of individual
components are statistically independent, non-Poissonian level spacing
distributions are possible.Comment: 19 pages, 4 figures. Accepted for publication in Phys. Rev.
All genus correlation functions for the hermitian 1-matrix model
We rewrite the loop equations of the hermitian matrix model, in a way which
allows to compute all the correlation functions, to all orders in the
topological expansion, as residues on an hyperelliptical curve. Those
residues, can be represented diagrammaticaly as Feynmann graphs of a cubic
interaction field theory on the curve.Comment: latex, 19 figure
- …
