476 research outputs found

    The spectrum of phenotypes associated with mutations in steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) includes severe penoscrotal hypospadias in 46,XY males without adrenal insufficiency

    Get PDF
    OBJECTIVE. Hypospadias is a frequent congenital anomaly but in most cases an underlying cause is not found. Steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) is a key regulator of human sex development and an increasing number of SF-1 (NR5A1) mutations are reported in 46,XY disorders of sex development (DSD). We hypothesized that NR5A1 mutations could be identified in boys with hypospadias. DESIGN AND METHODS. Mutational analysis of NR5A1 in 60 individuals with varying degrees of hypospadias from the German DSD network. RESULTS. Heterozygous NR5A1 mutations were found in three out of 60 cases. These three individuals represented the most severe end of the spectrum studied as they presented with penoscrotal hypospadias, variable androgenization of the phallus and undescended testes (three out of 20 cases (15%) with this phenotype). Testosterone was low in all three patients and inhibin B/anti-Müllerian hormone (AMH) were low in two patients. Two patients had a clear male gender assignment. Gender re-assignment to male occurred in the third case. Two patients harbored heterozygous nonsense mutations (p.Q107X/WT, p.E11X/WT). One patient had a heterozygous splice site mutation in intron 2 (c.103-3A/WT) predicted to disrupt the main DNA-binding motif. Functional studies of the nonsense mutants showed impaired transcriptional activation of an SF-1-responsive promoter (Cyp11a). To date, adrenal insufficiency has not occurred in any of the patients. CONCLUSIONS. SF-1 (NR5A1) mutations should be considered in 46,XY individuals with severe (penoscrotal) hypospadias, especially if undescended testes, low testosterone, or low inhibin B/AMH levels are present. SF-1 mutations in milder forms of idiopathic hypospadias are unlikely to be common

    Testosterone production during puberty in two 46,XY patients with disorders of sex development and novel NR5A1 (SF-1) mutations

    Get PDF
    BACKGROUND: Steroidogenic factor 1 (SF-1, NR5A1) is a key transcriptional regulator of many genes involved in the hypothalamic–pituitary–gonadal axis and mutations in NR5A1 can result in 46,XY disorders of sex development (DSD). Patients with this condition typically present with ambiguous genitalia, partial gonadal dysgenesis, and absent/rudimentary Müllerian structures. In these cases, testosterone is usually low in early infancy, indicating significantly impaired androgen synthesis. Further, Sertoli cell dysfunction is seen (low inhibin B, anti-Müllerian hormone). However, gonadal function at puberty in patients with NR5A1 mutations is unknown. SUBJECTS AND METHODS: Clinical assessment, endocrine evaluation, and genetic analysis were performed in one female and one male with 46,XY DSD who showed spontaneous virilization during puberty. The female patient presented at adolescence with clitoral hypertrophy, whereas the male patient presented at birth with severe hypospadias and entered puberty spontaneously. Molecular analysis of NR5A1 was performed followed by in vitro functional analysis of the two novel mutations detected. RESULTS: Testosterone levels were normal during puberty in both patients. Analysis of NR5A1 revealed two novel heterozygous missense mutations in the ligand-binding domain of SF-1 (patient 1: p.L376F; patient 2: p.G328V). The mutant proteins showed reduced transactivation of the CYP11A promoter in vitro. CONCLUSION: Patients with 46,XY DSD and NR5A1 mutations can produce sufficient testosterone for spontaneous virilization during puberty. Phenotypic females (46,XY) with NR5A1 mutations can present with clitoromegaly at puberty, a phenotype similar to other partial defects of androgen synthesis or action. Testosterone production in 46,XY males with NR5A1 mutations can be sufficient for virilization at puberty. As progressive gonadal dysgenesis is likely, gonadal function should be monitored in adolescence and adulthood, and early sperm cryopreservation considered in male patients if possible

    Sterol O-Acyltransferase 1 (SOAT1, ACAT) Is a Novel Target of Steroidogenic Factor-1 (SF-1, NR5A1, Ad4BP) in the Human Adrenal

    Get PDF
    Context: Steroidogenic factor-1 (SF-1, NR5A1, Ad4BP) is a master regulator of adrenal development and steroidogenesis. Defects in several known targets of SF-1 can cause adrenal disorders in humans.Objective: We aimed to identify novel targets of SF-1 in the human adrenal. These factors could be important regulators of adrenal development and steroidogenesis and potential candidates for adrenal dysfunction.Design: A gene discovery strategy was developed based on bidirectional manipulation of SF-1. Overexpression or knockdown of SF-1 in NCI-H295R human adrenocortical cells was used to identify a subset of positively-regulated SF-1 targets.Results: This approach identified well-established SF-1 target genes (STAR, CYP11A) and several novel genes (VSNL1, ZIM2, PEG3, SOAT1, and MTSS1). Given its role in cholesterol metabolism, sterol O-acyltransferase 1 (SOAT1, previously referred to as acyl-Coenzyme A: cholesterol acyltransferase 1, ACAT) was studied further and found to be expressed in the developing human fetal adrenal cortex. We hypothesized that impaired SOAT1 activity could result in adrenal insufficiency through reduced cholesteryl ester reserves or through toxic destruction of the adrenal cells during development. Therefore, mutational analysis of SOAT1 in a cohort of 43 patients with unexplained adrenal insufficiency was performed but failed to reveal significant coding sequence changes.Conclusions: Our reverse discovery approach led to the identification of novel SF-1 targets and defined SOAT1 as an important factor in human adrenal steroidogenesis. SF-1-dependent upregulation of SOAT1 may be important for maintaining readily-releasable cholesterol reserves needed for active steroidogenesis and during episodes of recurrent stress. (J Clin Endocrinol Metab 96: E663-E668, 2011

    Birth after TESE–ICSI in a man with hypogonadotropic hypogonadism and congenital adrenal hypoplasia linked to a DAX-1 (NR0B1) mutation

    Get PDF
    DAX1/NR0B1 mutations are responsible for X-linked congenital adrenal hypoplasia (AHC) associated with hypogonadotropic hypogonadism (HH). Few data are available concerning testicular function and fertility in men with DAX1 mutations. Azoospermia as well as failure of gonadotrophin treatment have been reported. We induced spermatogenesis in a patient who has a DAX1 mutation (c.1210C>T), leading to a stop codon in position 404 (p.Gln404X). His endocrine testing revealed a low testosterone level at 1.2 nmol/l (N: 12–40) with low FSH and LH levels at 2.1 IU/l (N: 1–5 IU/l) and 0.1 IU/l (N: 1–4 IU/l), respectively. Baseline semen analysis revealed azoospermia. Menotropin (Menopur®:150 IU, three times weekly) and human chorionic gonadotrophin (1500 IU, twice weekly) were used. After 20 months of treatment, as azoospermia persisted, bilateral multiple site testicular biopsies were performed. Histology revealed severe hypospermatogenesis. Rare spermatozoa were extracted from the right posterior fragment and ICSI was performed. Four embryos were obtained and, after a frozen–thawed single-embryo transfer, the patient's wife became pregnant and gave birth to a healthy boy. We report the first case of paternity after TESE–ICSI in a patient with DAX1 mutation, giving potential hope to these patients to father non-affected children. Furthermore, this case illustrates the fact that patients with X-linked AHC have a primary testicular defect in addition to HH

    Factors associated with rifampin resistance in staphylococcal periprosthetic joint infections (PJI): a matched case-control study

    Get PDF
    Purpose: Rifampin combination therapy plays an important role in the management of staphylococcal periprosthetic joint infection (PJI). However, the emergence of rifampin resistance is a feared complication. We retrospectively analysed predetermined potential risk factors in patients with rifampin-resistant staphylococcal PJI in a multicentre case-control study. Methods: Cases (n=48) were defined as PJI caused by rifampin-resistant staphylococci. Rifampin-susceptible controls (n=48) were matched for microorganism and type of prosthetic joint. Uni- and multivariable conditional logistic regression analyses were performed to estimate odds ratios (OR) with 95% confidence intervals (95% CI). Results: Forty-eight cases (31 men; median age 67years; age range 39-88years) with hip- (n=29), knee- (n=13), elbow- (n=4), shoulder- (n=1) or ankle-PJI (n=1) were enrolled in the study. Staphylococcus aureus and coagulase-negative staphylococci were isolated in ten and 38 episodes, respectively. Most of the cases (n=44, 92%) had a previous PJI, and 93 % (n=41) of these had been treated with rifampin. There was an independent association of emergence of rifampin resistance with male sex (OR 3.6, 95% CI 1.2-11),≥3 previous surgical revisions (OR 4.7, 95% CI 1.6-14.2), PJI treatment with high initial bacterial load (inadequate surgical debridement, <2weeks of intravenous treatment of the combination medication; OR 4.9, 95% CI 1.6-15) and inadequate rifampin therapy (OR 5.4, 95% CI 1.2-25). Conclusions: Based on our results, extensive surgical debridement and adequate antibiotic therapy are needed to prevent the emergence of rifampin resistanc

    Photothermal Absorption Spectroscopy of Individual Semiconductor Nanocrystals

    Full text link
    Photothermal heterodyne detection is used to record the first room-temperature absorption spectra of single CdSe/ZnS semiconductor nanocrystals. These spectra are recorded in the high cw excitation regime, and the observed bands are assigned to transitions involving biexciton and trion states. Comparison with the single nanocrystals photoluminescence spectra leads to the measurement of spectral Stokes shifts free from ensemble averaging

    ChIP-on-chip analysis reveals angiopoietin 2 (Ang2, ANGPT2) as a novel target of steroidogenic factor-1 (SF-1, NR5A1) in the human adrenal gland

    Get PDF
    The nuclear receptor steroidogenic factor-1 (SF-1, NR5A1) is a key regulator of adrenal and gonadal biology. Disruption of SF-1 can lead to disorders of adrenal development, while increased SF-1 dosage has been associated with adrenocortical tumorigenesis. We aimed to identify a novel subset of SF-1 target genes in the adrenal by using chromatin immunoprecipitation (ChIP) microarrays (ChIP-on-chip) combined with systems analysis. SF-1 ChIP-on-chip was performed in NCI-H295R human adrenocortical cells using promoter tiling arrays, leading to the identification of 445 gene loci where SF-1-binding regions were located from 10 kb upstream to 3 kb downstream of a transcriptional start. Network analysis of genes identified as putative SF-1 targets revealed enrichment for angiogenic process networks. A 1.1-kb SF-1-binding region was identified in the angiopoietin 2 (Ang2, ANGPT2) promoter in a highly repetitive region, and SF-1-dependent activation was confirmed in luciferase assays. Angiogenesis is paramount in adrenal development and tumorigenesis, but until now a direct link between SF-1 and vascular remodeling has not been established. We have identified Ang2 as a potentially important novel target of SF-1 in the adrenal gland, indicating that regulation of angiogenesis might be an important additional mechanism by which SF-1 exerts its actions in the adrenal gland

    Implications of the Cosmic Background Imager Polarization Data

    Get PDF
    We present new measurements of the power spectra of the E-mode of CMB polarization, the temperature T, the cross-correlation of E and T, and upper limits on the B-mode from 2.5 years of dedicated Cosmic Background Imager (CBI) observations. Both raw maps and optimal signal images in the uv-plane and real space show strong detections of the E-mode (11.7 sigma for the EE power spectrum overall) and no detection of the B-mode. The power spectra are used to constrain parameters of the flat tilted adiabatic Lambda-CDM models: those determined from EE and TE bandpowers agree with those from TT, a powerful consistency check. There is little tolerance for shifting polarization peaks from the TT-forecast locations, as measured by the angular sound crossing scale theta = 100 ell_s = 1.03 +/- 0.02 from EE and TE cf. 1.044 +/- 0.005 with the TT data included. The scope for extra out-of-phase peaks from subdominant isocurvature modes is also curtailed. The EE and TE measurements of CBI, DASI and BOOMERANG are mutually consistent, and, taken together rather than singly, give enhanced leverage for these tests.Comment: 15 pages, 9 figures, submitted to ApJ -- Accepted version. The fine-bin spectrum, covariance matrix, and window functions are now available on the web (suitable for use in COSMOMC) at: http://www.astro.caltech.edu/~tjp/CBI/data2006/index.html The pipeline in the previous version inadvertently omitted one antenna, so the new spectrum contains ~15% more data. We emphasize that previous results were in no way biased, and that the (small) changes to the spectrum solely reflect the inclusion of the additional data. Numbers and figures in the paper have been updated correspondingly. All maps now have color bar

    Role of DAX-1 (NROB1) and Steroidogenic Factor-1 (NR5A1) in Human Adrenal Function

    Get PDF
    The nuclear receptor transcription factors DAX-1 (NROB1) and SF-1 (NR5A1) regulate many aspects of adrenal and reproductive development and function. Disruption of the genes encoding these factors can be associated with pediatric adrenal disease. DAX-1 mutations are classically associated with X-linked adrenal hypoplasia congenita, hypogonadotropic hypogonadism and impaired spermatogenesis. However, other phenotypes are also being reported, such as isolated mineralocorticoid insufficiency, premature sexual development, primary adrenal insufficiency in a 46,XX patient and late-onset X-linked adrenal hypoplasia congenita and/or hypogonadotropic hypogonadism. SF-1 mutations have also been associated with primary adrenal insufficiency, together with 46,XY disorders of sex development. However it is emerging that SF-1 changes are a relatively rare cause of primary adrenal failure in humans, and most individuals with SF-1 mutations have a spectrum of 46,XY disorders of sex development phenotypes. These conditions range from 46,XY females with streak gonads and miillerian structures, through children with ambiguous genitalia and inguinal testes, to severe penoscrotal hypospadias with undescended testes. Therefore, the human gonad appears to be more sensitive than the adrenal gland to loss of SF-1 function. This review will focus on the expanding range of phenotypes associated with DAX-1 and SF-1 mutations
    corecore