45 research outputs found
3-D simulation of water and heat transport processes in fuel cells during evaporative cooling and humidification
Evaporative cooling is a promising concept improve the efficiency and reduced costs of polymer electrolyte fuel cells (PEFCs) using modified gas diffusion layers with hydrophilic and hydrophobic lines. This concept has been demonstrated to simultaneously achieve cooling and membrane humidification in experiments. We have developed a 3-D numerical model of such an evaporative cooling cell to address remain questions from the experiments
Fuel Cell Modeling and Simulations
Fundamental and phenomenological models for cells, stacks, and complete systems of PEFC and SOFC are reviewed and their predictive power is assessed by comparing model simulations against experiments. Computationally efficient models suited for engineering design include the (1+1) dimensionality approach, which decouples the membrane in-plane and through-plane processes, and the volume-averaged-method (VAM) that considers only the lumped effect of pre-selected system components. The former model was shown to capture the measured lateral current density inhomogeneities in a PEFC and the latter was used for the optimization of commercial SOFC systems. State Space Modeling (SSM) was used to identify the main reaction pathways in SOFC and, in conjunction with the implementation of geometrically well- defined electrodes, has opened a new direction for the understanding of electrochemical reactions. Furthermore, SSM has advanced the understanding of the COpoisoning- induced anode impedance in PEFC. Detailed numerical models such as the Lattice Boltzmann (LB) method for transport in porous media and the full 3-D Computational Fluid Dynamics (CFD) Navier-Stokes simulations are addressed. These models contain all components of the relevant physics and they can improve the understanding of the related phenomena, a necessary condition for the development of both appropriate simplified models as well as reliable technologies. Within the LB framework, a technique for the characterization and computer- reconstruction of the porous electrode structure was developed using advanced pattern recognition algorithms. In CFD modeling, 3-D simulations were used to investigate SOFC with internal methane steam reforming and have exemplified the significance of porous and novel fractal channel distributors for the fuel and oxidant delivery, as well as for the cooling of PEFC. As importantly, the novel concept has been put forth of functionally designed, fractal-shaped fuel cells, showing promise of significant performance improvements over the conventional rectangular shaped units. Thermo-economic modeling for the optimization of PEFC is finally addressed
Operando Properties of Gas Diffusion Layers: Saturation and Liquid Permeability
Polymer electrolyte fuel cells (PEFC) require a sophisticated water management to operate efficiently, especially at high current densities which are needed to reach system cost targets. The description of the complicated two-phase water transport remains a challenge in PEFC models and requires experimental validation on various length scales. In this work, operando X-ray tomographic microscopy (XTM) with scan times of 10 s was used to depict the liquid water at defined conditions at a technically relevant cell temperature of 80°C. Cells with Toray TGP-H-060 gas diffusion layer (GDL) with microporous layer (MPL) and different rib width were operated with different feed gas humidifications (under- and oversaturated) and current densities between 0.75 to 3.0 A/cm2. Based on the quantification of the local and average saturation, the distribution of water cluster size is analyzed. Different categories of the water cluster connectivity are defined and quantified. The analysis is complemented with numerical simulations of the permeability in the liquid phase of the GDL that is correlated to saturation for the different GDL domains. The numerical simulations of the pressure drop of liquid water flow from the catalyst layer toward the gas channels in channel-rib repetition units allows for conclusions on cluster growth mechanisms
Polymer Electrolyte Water Electrolysis: Correlating Performance and Porous Transport Layer Structure: Part II. Electrochemical Performance Analysis
In the first paper of this series the bulk and surface structural properties of Ti-fiber based porous transport layers (PTL) were characterized and described. In this second part the correlation of structure to the performance in polymer electrolyte water electrolysis cells is analyzed by determination of the three main overpotentials of ohmic, kinetics and mass transport losses. The strongest correlation between the PTL bulk transport properties and cell performance is obtained for heat transport. The current density dependent temperature gradients show good agreement with ex situ determined heat conductivity from part one. However, surface properties of the PTL materials, have a stronger influence on cell performance than the bulk properties. Catalyst layer utilization and ohmic interfacial resistances correlate with the interfacial contact areas reported in part one and performance increases with increasing contact area. This is due to a local mass transport resistance decreasing with increasing catalyst layer utilization.ISSN:0013-4651ISSN:1945-711
Electrolyzer modeling and real-time control for optimized production of hydrogen gas
We present a method that operates an electrolyzer to meet the demand of a hydrogen refueling station in a cost-effective manner by solving a model-based optimal control problem. To formulate the underlying problem, we first conduct an experimental characterization of a Siemens SILYZER 100 polymer electrolyte membrane electrolyzer with 100 kW of rated power. We run experiments to determine the electrolyzer’s conversion efficiency and thermal dynamics as well as the overload-limiting algorithm used in the electrolyzer. The resulting detailed nonlinear models are used to design a real-time optimal controller, which is then implemented on the actual system. Each minute, the controller solves a deterministic, receding-horizon problem which seeks to minimize the cost of satisfying a given hydrogen demand, while using a storage tank to take advantage of time-varying electricity prices and photovoltaic inflow. We illustrate in simulation the significant cost reduction achieved by our method compared to others in the literature, and then validate our method by demonstrating it in real-time operation on the actual system.ISSN:0306-2619ISSN:1872-911