1,738 research outputs found
Fusion multiplicities as polytope volumes: N-point and higher-genus su(2) fusion
We present the first polytope volume formulas for the multiplicities of
affine fusion, the fusion in Wess-Zumino-Witten conformal field theories, for
example. Thus, we characterise fusion multiplicities as discretised volumes of
certain convex polytopes, and write them explicitly as multiple sums measuring
those volumes. We focus on su(2), but discuss higher-point (N>3) and
higher-genus fusion in a general way. The method follows that of our previous
work on tensor product multiplicities, and so is based on the concepts of
generalised Berenstein-Zelevinsky diagrams, and virtual couplings. As a
by-product, we also determine necessary and sufficient conditions for
non-vanishing higher-point fusion multiplicities. In the limit of large level,
these inequalities reduce to very simple non-vanishing conditions for the
corresponding tensor product multiplicities. Finally, we find the minimum level
at which the higher-point fusion and tensor product multiplicities coincide.Comment: 14 pages, LaTeX, version to be publishe
Generating-function method for tensor products
This is the first of two articles devoted to a exposition of the
generating-function method for computing fusion rules in affine Lie algebras.
The present paper is entirely devoted to the study of the tensor-product
(infinite-level) limit of fusions rules.
We start by reviewing Sharp's character method. An alternative approach to
the construction of tensor-product generating functions is then presented which
overcomes most of the technical difficulties associated with the character
method. It is based on the reformulation of the problem of calculating tensor
products in terms of the solution of a set of linear and homogeneous
Diophantine equations whose elementary solutions represent ``elementary
couplings''. Grobner bases provide a tool for generating the complete set of
relations between elementary couplings and, most importantly, as an algorithm
for specifying a complete, compatible set of ``forbidden couplings''.Comment: Harvmac (b mode : 39 p) and Pictex; this is a substantially reduced
version of hep-th/9811113 (with new title); to appear in J. Math. Phy
Contribution des traits psychopathiques à l’évolution des problèmes de conduites de filles et de garçons d'âge scolaire primaire
Les problèmes de conduites (PC) qui surviennent dès l'enfance sont à risque
de persistance. Des travaux suggèrent que ce risque est accru lorsque les PC
s'accompagnent de traits psychopathiques, opérationnalisés chez l'enfant par des
dimensions de dureté-insensibilité, égocentrisme-narcissisme et impulsivitéirresponsabilité.
Les travaux sur ces traits se sont cependant centrés sur la dimension
de dureté-insensibilité et ne permettent pas d'établir si les trois dimensions des traits
psychopathiques offrent une valeur prédictive ajoutée chez des enfants ayant des PC
sévères. Cette étude longitudinale a pour objectif principal d'établir la contribution
relative des trois dimensions des traits psychopathiques pour prédire l’évolution des
PC chez des enfants prĂ©sentant dĂ©jĂ ces problèmes Ă l'âge scolaire primaire, et Ă
examiner si ces associations varient selon le genre. Les 213 enfants qui participent Ă
l'étude ont été sélectionnés parmi les élèves de moins de dix ans recevant des services
psychoéducatifs et dont les PC atteignaient un seuil clinique. Les analyses de
régressions montrent que seule la dimension d'impulsivité-irresponsabilité contribue
significativement à prédire les PC trois ans plus tard au-delà de la sévérité initiale des
PC et du revenu familial, et ce, uniquement chez les garçons. Les résultats remettent
en question l'utilisation de la dimension de dureté-insensibilité pour identifier un
sous-groupe d'enfants dont les PC sont persistants, ainsi que la pertinence mĂŞme des
traits psychopathiques pour identifier un tel sous-groupe chez les filles
Expressing Duration and Temporal Relationships by Means of the Present Perfect Progressive
The Present Perfect Progressive often expresses an activity reaching up to the present, as in He has been speaking for two hours. Here the subject is represented after part of the event, hence the impression of an unfinished activity. In some cases, however, the completed portion of the event represents almost the whole event, as we shall see with explicit examples. In other cases still, the Present Perfect Progressive expresess a just- finished event, where the subject is situated after the whole event’s duration. The aim of this article is to answer the following question: how can the Present Perfect Progressive express different moments of the event’s duration and so evoke different types of events? As we shall see, the answer lies in the way that events are expressed by the present participle.Le Present Perfect Progressive exprime souvent une activité se déroulant jusqu’au présent comme dans He has been speaking for two hours. Dans ce cas, le sujet est situé après une partie de l’événement, d’où l’impression d’une activité inachevée. Dans certains cas, cependant, la partie accomplie de l’évènement représente la quasi-totalité de l’évènement, comme nous le verrons dans cet article. Enfin, le Present Perfect Progressive peut exprimer un évènement venant tout juste de se terminer. Dans ce cas, le sujet est situé après la durée entière de l’évènement. Le présent article vise donc à répondre à la question suivante: comment peut-on évoquer différents moments de la durée d’un évènement – et exprimer ainsi différents types d’évènements? Comme nous le verrons, la réponse réside dans la manière de représenter l’évènement exprimé par le participe présent
Generating-function method for fusion rules
This is the second of two articles devoted to an exposition of the
generating-function method for computing fusion rules in affine Lie algebras.
The present paper focuses on fusion rules, using the machinery developed for
tensor products in the companion article. Although the Kac-Walton algorithm
provides a method for constructing a fusion generating function from the
corresponding tensor-product generating function, we describe a more powerful
approach which starts by first defining the set of fusion elementary couplings
from a natural extension of the set of tensor-product elementary couplings. A
set of inequalities involving the level are derived from this set using Farkas'
lemma. These inequalities, taken in conjunction with the inequalities defining
the tensor products, define what we call the fusion basis. Given this basis,
the machinery of our previous paper may be applied to construct the fusion
generating function. New generating functions for sp(4) and su(4), together
with a closed form expression for their threshold levels are presented.Comment: Harvmac (b mode : 47 p) and Pictex; to appear in J. Math. Phy
- …