22 research outputs found
Class IA Phosphatidylinositol 3-Kinase in Pancreatic β Cells Controls Insulin Secretion by Multiple Mechanisms
SummaryType 2 diabetes is characterized by insulin resistance and pancreatic β cell dysfunction, the latter possibly caused by a defect in insulin signaling in β cells. Inhibition of class IA phosphatidylinositol 3-kinase (PI3K), using a mouse model lacking the pik3r1 gene specifically in β cells and the pik3r2 gene systemically (βDKO mouse), results in glucose intolerance and reduced insulin secretion in response to glucose. β cells of βDKO mice had defective exocytosis machinery due to decreased expression of soluble N-ethylmaleimide attachment protein receptor (SNARE) complex proteins and loss of cell-cell synchronization in terms of Ca2+ influx. These defects were normalized by expression of a constitutively active form of Akt in the islets of βDKO mice, preserving insulin secretion in response to glucose. The class IA PI3K pathway in β cells in vivo is important in the regulation of insulin secretion and may be a therapeutic target for type 2 diabetes
A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism
Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease
A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism
Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease
Acquired partial lipoatrophy as graft-versus-host disease and treatment with metreleptin: two case reports
Abstract Introduction Acquired partial lipoatrophy has been reported after bone marrow transplantation during childhood; however, no adult cases have previously been reported. We herein report two adult cases of acquired partial lipoatrophy after transplantation. Case presentation A 28-year-old Japanese woman developed diabetic ketoacidosis and received insulin therapy after bone marrow transplantation. She manifested partial lipoatrophy of the extremities, prominent insulin resistance, hyperglycemia, hypertriglyceridemia, and fatty liver. A 40-year-old Japanese woman underwent liver transplantation from a living donor for alcoholic liver disease after abstinence from alcohol. She newly developed non-alcoholic steatohepatitis and diabetes. Non-alcoholic steatohepatitis progressed to liver failure, and a second liver transplantation from a brain-dead donor was performed at 42 years of age. She demonstrated loss of subdermal fat of the upper and lower extremities, prominent insulin resistance, hyperglycemia, and hypertriglyceridemia. In both cases, the injection of recombinant methionyl human leptin reversed all of the metabolic abnormalities. Conclusions Acquired partial lipoatrophy after transplantation is a manifestation of chronic graft-versus-host disease in adults. This entity is associated with diabetes with prominent insulin resistance and severe hypertriglycemia and can be successfully treated with metreleptin for the long term
CerS1-Derived C-18:0 Ceramide in Skeletal Muscle Promotes Obesity-Induced Insulin Resistance
Skeletal muscle accumulates ceramides in obesity, which contribute to the development of obesity-associated insulin resistance. However, it remained unclear which distinct ceramide species in this organ contributes to instatement of systemic insulin resistance. Here, ceramide profiling of high-fat diet (HFD)-fed animals revealed increased skeletal muscle C-18:0 ceramide content, concomitant with increased expression of ceramide synthase (CerS)1. Mice lacking CerS1, either globally or specifically in skeletal muscle (CerS1 Delta(SkM)), exhibit reduced muscle C-18:0 ceramide content and significant improvements in systemic glucose homeostasis. CerS1 Delta(SkM) mice exhibit improved insulin-stimulated suppression of hepatic glucose production, and lack of CerS1 in skeletal muscle improves systemic glucose homeostasis via increased release of Fgf21 from skeletal muscle. In contrast, muscle-specific deficiency of C-16:0 ceramide-producing CerS5 and CerS6 failed to protect mice from obesity-induced insulin resistance. Collectively, these results reveal the tissue-specific function of distinct ceramide species during the development of obesity-associated insulin resistance
A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle
Over 40% of microRNAs (miRNAs) are located in introns of protein-coding genes, and many of these intronic miRNAs are co-regulated with their host genes(1,2). In such cases of co-regulation, the products of host genes and their intronic miRNAs can cooperate to coordinately regulate biologically important pathways(3,4). Therefore, we screened intronic miRNAs dysregulated in the livers of mouse models of obesity to identify previously uncharacterized protein-coding host genes that may contribute to the pathogenesis of obesity-associated insulin resistance and type 2 diabetes mellitus. Our approach revealed that expression of both the gene encoding ectodysplasin A (Eda), the causal gene in X-linked hypohidrotic ectodermal dysplasia (XLHED)(5), and its intronic miRNA, miR-676, was increased in the livers of obese mice. Moreover, hepatic EDA expression is increased in obese human subjects and reduced upon weight loss, and its hepatic expression correlates with systemic insulin resistance. We also found that reducing miR-676 expression in db/db mice increases the expression of proteins involved in fatty acid oxidation and reduces the expression of inflammatory signaling components in the liver. Further, we found that Eda expression in mouse liver is controlled via PPAR gamma and RXR-alpha, increases in circulation under conditions of obesity, and promotes JNK activation and inhibitory serine phosphorylation of IRS1 in skeletal muscle. In accordance with these findings, gain-and loss-of-function approaches reveal that liver-derived EDA regulates systemic glucose metabolism, suggesting that EDA is a hepatokine that can contribute to impaired skeletal muscle insulin sensitivity in obesity
Neonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding
Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC neurons of the offspring prevents altered POMCprojections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation, and impaired glucosestimulated insulin secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections, and show that abnormal insulin signaling contributes to this effect