32 research outputs found
An International Quiet Ocean Experiment
Author Posting. © Oceanography Society, 2011. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 24, no. 2 (2011): 174–181, doi:10.5670/oceanog.2011.37.The effect of noise on marine life is one of the big unknowns of current marine science. Considerable evidence exists that the human contribution to ocean noise has increased during the past few decades: human noise has become the dominant component of marine noise in some regions, and noise is directly correlated with the increasing industrialization of the ocean. Sound is an important factor in the lives of many marine organisms, and theory and increasing observations suggest that human noise could be approaching levels at which negative effects on marine life may be occurring. Certain species already show symptoms of the effects of sound. Although some of these effects are acute and rare, chronic sublethal effects may be more prevalent, but are difficult to measure. We need to identify the thresholds of such effects for different species and be in a position to predict how increasing anthropogenic sound will add to the effects. To achieve such predictive capabilities, the Scientific Committee on Oceanic Research (SCOR) and the Partnership for Observation of the Global Oceans (POGO) are developing an International Quiet Ocean Experiment (IQOE), with the objective of coordinating the international research community to both quantify the ocean soundscape and examine the functional relationship between sound and the viability of key marine organisms. SCOR and POGO will convene an open science meeting to gather community input on the important research, observations, and modeling activities that should be included in IQOE
Carbon Dioxide Emissions in a Methane Economy
Increasing reliance on natural gas (methane) to meet global energy demands holds implications for atmospheric CO2 concentrations. Analysis of these implications is presented, based on a logistic substitution model viewing energy technologies like biological species invading an econiche and substituting in case of superiority for existing species. This model suggests gas will become the dominant energy source and remain so for 50 years, peaking near 70 percent of world supply. Two scenarios of energy demand are explored, one holding per capita consumption at current levels, the second raising the global average in the year 2100 to the current U.S. level. In the first ("efficiency") scenario concentrations peak about 450 ppm, while in the second ("long wave") they near 600 ppm. Although projected CO2 concentrations in a "methane economy" are low in relation to other scenarios, the projections confirm that global climate warming is likely to be a major planetary concern throughout the twenty-first century. A second finding is that data on past growth of world per capita energy consumption group neatly into two pulses consistent with long-wave theories in economics
Will the rest of the world live like America?
Living like America means producing and consuming at or near the level of the present top consumer. For material well-being as well as equity, many wish and workfor a world in which high economic activity pervades. Others fear environmental harm from the product of global population times the affluence of America. I ask: Has the world ever had uniform income at the level of the top consumer? Do swift, cheap transport and communication equalize income? Historically, incomes vary for the reason that income crowns the successful completion of a series of multiplicative tasks, causing a skewed distribution. Despite lessening physical obstacles, social wrinkles maintain distributions broad and skewed, as the diffusion of railroads, cars, and electricity shows. As incomes rise, however, economic, social, and environmental requirements and capacities grow to lessen harm. We are likely to live in a cleaner world, with sustained inequalities