44 research outputs found

    FED-A, an advanced performance FED based on low safety factor and current drive

    Get PDF
    This document is one of four describing studies performed in FY 1982 within the context of the Fusion Engineering Device (FED) Program for the Office of Fusion Energy, U.S. Department of Energy. The documents are: 1. FED Baseline Engineering Studies (ORNL/FEDC-82/2), 2. FED-A, An Advanced Performance FED Based on Low Safety Factor and Current Drive (this document), 3. FED-R, A Fusion Device Utilizing Resistive Magnets (ORNL/FEDC-82/1), and 4. Technology Demonstration Facility TDF. These studies extend the FED Baseline concept of FY 1981 and develop innovative and alternative concepts for the FED. The FED-A study project was carried out as part of the Innovative and Alternative Tokamak FED studies, under the direction of P. H. Rutherford, which were part of the national FED program during FY 1982. The studies were performed jointly by senior scientists in the magnetic fusion community and the staff of the Fusion Engineering Design Center (FEDC). Y-K. M. Peng of the FEDC, on assignment from Oak Ridge National Laboratory, served as the design manager

    Neutral beam energy and power requirements for expanding radius and full bore startup of tokamak reactors

    Get PDF
    Natural beam power and energy requirements are compared for full density full bore and expanding radius startup scenarios in an elongated plasma, The Next Step (TNS), as a function of beam pulse time and plasma density. Because of the similarity of parameters, the results should also be applicable to Engineering Test Facility (ETF) and International Tokamak Reactor (INTOR) studies. A transport model consisting of neoclassical ion conduction and anomalous electron conduction and diffusion based on ALCATOR scaling leads to average densities in the range approx. 0.8 to 1.2 x 10/sup 14/ cm/sup -3/ being sufficient for ignition. Neutral deuterium beam energies in the range 120 to 180 keV are adequate for penetration, with the required power injected into the plasma decreasing with increasing beam energy. The neutral beam power decreases strongly with increasing beam pulse length b/sub b/ until t/sub b/ exceeds a few total energy confinement times, yielding b/sub b/ approx. = 4 to 6 s for the TNS plasma
    corecore