26 research outputs found

    Bridging Pico-to-Nanonewtons with a Ratiometric Force Probe for Monitoring Nanoscale Polymer Physics Before Damage

    Get PDF
    Understanding the transmission of nanoscale forces in the pico-to-nanonewton range is important in polymer physics. While physical approaches have limitations in analyzing the local force distribution in condensed environments, chemical analysis using force probes is promising. However, there are stringent requirements for probing the local forces generated before structural damage. The magnitude of those forces corresponds to the range below covalent bond scission (from 200 pN to several nN) and above thermal fluctuation (several pN). Here, we report a conformationally flexible dual-fluorescence force probe with a theoretically estimated threshold of approximately 100 pN. This probe enables ratiometric analysis of the distribution of local forces in a stretched polymer chain network. Without changing the intrinsic properties of the polymer, the force distribution was reversibly monitored in real time. Chemical control of the probe location demonstrated that the local stress concentration is twice as biased at crosslinkers than at main chains, particularly in a strain-hardening region. Due to the high sensitivity, the percentage of stressed force probes was estimated to be more than 1000 times higher than the activation rate of a conventional mechanophore.Comment: 21 pages and 5 figures in the main text, and 73 pages and 68 figures in the supplementary material

    Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage

    Get PDF
    ピンと張られた分子鎖を定量する「羽ばたき型蛍光Force Probe」の開発 --高分子材料の中で力のかかった分子鎖の比率を蛍光イメージングで計測する--. 京都大学プレスリリース. 2022-01-14.Understanding the transmission of nanoscale forces in the pico-to-nanonewton range is important in polymer physics. While physical approaches have limitations in analyzing the local force distribution in condensed environments, chemical analysis using force probes is promising. However, there are stringent requirements for probing the local forces generated before structural damage. The magnitude of those forces corresponds to the range below covalent bond scission (from 200 pN to several nN) and above thermal fluctuation (several pN). Here, we report a conformationally flexible dual-fluorescence force probe with a theoretically estimated threshold of approximately 100 pN. This probe enables ratiometric analysis of the distribution of local forces in a stretched polymer chain network. Without changing the intrinsic properties of the polymer, the force distribution was reversibly monitored in real time. Chemical control of the probe location demonstrated that the local stress concentration is twice as biased at crosslinkers than at main chains, particularly in a strain-hardening region. Due to the high sensitivity, the percentage of the stressed force probes was estimated to be more than 1000 times higher than the activation rate of a conventional mechanophore

    Cooperative effect of radioimmunotherapy and antiangiogenic therapy with thalidomide in human cancer xenografts

    Get PDF
    金沢大学大学院医学系研究科Antiangiogenic therapy may prolong the dormancy of cancer lesions. Moreover, radioimmunotherapy (RIT) may eradicate this population of cells. This study dealt with determining the benefits associated with the combined usefulness of these 2 therapies with respect to inhibition of tumor growth. Methods: Antiangiogenic therapy using oral thalidomide (daily dose, 200 mg/kg) and RIT involving a single intravenous injection (4.63 MBq 131I-A7, an IgG1 murine monoclonal antibody) were conducted in mice bearing LS180 human colon cancer xenografts. RIT with an irrelevant IgG1, HPMS-1, was also performed as a control. Antiangiogenesis of thalidomide was investigated by immunohistochemical analysis of tumor sections. Results: Antiangiogenic therapy and RIT with 131I-A7 significantly suppressed the growth of xenografts. This combination produced more efficient tumor growth inhibition than did the monotherapy (P < 0.005). RIT using 131I-HPMS-1 was far less effective than 131I-A7, even when combined with thalidomide administration. Immunohistochemistry revealed a decrease in the microvessel number within tumors treated with thalidomide (P < 0.0001). Combined therapy further reduced the microvessel number (P < 0.01 vs. thalidomide monotherapy), Conclusion: The combination of RIT and thalidomide antiangiogenic therapy produces a better response of tumors than does monotherapy. Acting in concert, antiangiogenic therapy may prolong the dormancy of cancer lesions and RIT may eradicate this population of cells

    Spin-Gap Phases in Tomonaga-Luttinger Liquids

    Full text link
    We give the details of the analysis for critical properties of spin-gap phases in one-dimensional lattice electron models. In the Tomonaga-Luttinger (TL) liquid theory, the spin-gap instability occurs when the backward scattering changes from repulsive to attractive. This transition point is shown to be equivalent to that of the level-crossing of the singlet and the triplet excitation spectra, using the c=1 conformal field theory and the renormalization group. Based on this notion, the transition point between the TL liquid and the spin-gap phases can be determined with high-accuracy from the numerical data of finite-size clusters. We also discuss the boundary conditions and discrete symmetries to extract these excitation spectra. This technique is applied to the extended Hubbard model, the t-J model, and the t-J-J' model, and their phase diagrams are obtained. We also discuss the relation between our results and analytical solutions in weak-coupling and low-density limits.Comment: 14 pages(REVTeX), 9 figures(EPS), 1 table, To appear in PRB, Detailed paper of PRL 79 (1997) 3214 and JPSJ 67 (1998) 71

    A novel single-stranded DNA-specific 3′–5′ exonuclease, Thermus thermophilus exonuclease I, is involved in several DNA repair pathways

    Get PDF
    Single-stranded DNA (ssDNA)-specific exonucleases (ssExos) are expected to be involved in a variety of DNA repair pathways corresponding to their cleavage polarities; however, the relationship between the cleavage polarity and the respective DNA repair pathways is only partially understood. To understand the cellular function of ssExos in DNA repair better, genes encoding ssExos were disrupted in Thermus thermophilus HB8 that seems to have only a single set of 5′–3′ and 3′–5′ ssExos unlike other model organisms. Disruption of the tthb178 gene, which was expected to encode a 3′–5′ ssExo, resulted in significant increase in the sensitivity to H2O2 and frequency of the spontaneous mutation rate, but scarcely affected the sensitivity to ultraviolet (UV) irradiation. In contrast, disruption of the recJ gene, which encodes a 5′–3′ ssExo, showed little effect on the sensitivity to H2O2, but caused increased sensitivity to UV irradiation. In vitro characterization revealed that TTHB178 possessed 3′–5′ ssExo activity that degraded ssDNAs containing deaminated and methylated bases, but not those containing oxidized bases or abasic sites. Consequently, we concluded that TTHB178 is a novel 3′–5′ ssExo that functions in various DNA repair systems in cooperation with or independently of RecJ. We named TTHB178 as T. thermophilus exonuclease I

    Immunologic targeting of CD30 eliminates tumourigenic human pluripotent stem cells, allowing safer clinical application of hiPSC-based cell therapy

    No full text
    Abstract Induced pluripotent stem cells (iPSCs) are promising candidate cells for cardiomyogenesis in the failing heart. However, teratoma/tumour formation originating from undifferentiated iPSCs contaminating the graft is a critical concern for clinical application. Here, we hypothesized that brentuximab vedotin, which targets CD30, induces apoptosis in tumourigenic cells, thus increasing the safety of iPSC therapy for heart failure. Flow cytometry analysis identified consistent expression of CD30 in undifferentiated human iPSCs. Addition of brentuximab vedotin in vitro for 72 h efficiently induced cell death in human iPSCs, associated with a significant increase in G2/M phase cells. Brentuximab vedotin significantly reduced Lin28 expression in cardiomyogenically differentiated human iPSCs. Transplantation of human iPSC-derived cardiomyocytes (CMs) without treatment into NOG mice consistently induced teratoma/tumour formation, with a substantial number of Ki-67–positive cells in the graft at 4 months post-transplant, whereas iPSC-derived CMs treated with brentuximab vedotin prior to the transplantation did not show teratoma/tumour formation, which was associated with absence of Ki-67–positive cells in the graft over the same period. These findings suggest that in vitro treatment with brentuximab vedotin, targeting the CD30-positive iPSC fraction, reduced tumourigenicity in human iPSC-derived CMs, potentially providing enhanced safety for iPSC-based cardiomyogenesis therapy in clinical scenarios
    corecore