155 research outputs found

    Full Scale Field Test on a Slope Progressive Failure

    Get PDF
    In order to obtain the mechanical behaviour parameters of the red structured clays from the Danube- Black Sea Canal and to estimate the behavior of the slopes cut in such clays, an experimental programme was carried out. A checked failure was provoked for a slope dug in red fissured clays. The paper presents the results of the field investigations and the laboratory test regarding the, characteristics of the structured clays, as well as the in situ measurements during the experimental programme. The results of these measurements are compared with those obtained by numerical symulation using a computer program

    CP Violation for Leptons at Higher Energy Scales

    Full text link
    The phase convention independent measure of CP violation for three generations of leptons is evaluated at different energy scales. Unlike in the quark sector, this quantity does not vary much between the weak and the grand unification scales. The behavior of the measure of CP violation in the Standard Model is found to be different from that in the extensions of the Standard Model.Comment: 10 pages, 2 figures, references added, typos correcte

    Natural Candidates for Superheavy Dark Matter in String and M Theory

    Get PDF
    We reconsider superheavy dark matter candidates in string and M theory, in view of the possibility that inflation might generate superheavy particles with an abundance close to that required for a near-critical Universe. We argue that cryptons - stable or metastable bound states of matter in the hidden sector - are favoured over other possible candidates in string or MM theory, such as the Kaluza-Klein states associated with extra dimensions. We exhibit a specific string model that predicts cryptons as hidden-sector bound states weighing 1012\sim 10^{12} GeV, and discuss their astrophysical observability.Comment: 4 pages, revtex, no figur

    Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects

    Full text link
    We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation in R3R^{3} phase space. We demonstrate that it accommodates the phase space dynamics of low dimensional dissipative systems such as the much studied Lorenz and R\"{o}ssler Strange attractors, as well as the more recent constructions of Chen and Leipnik-Newton. The rotational, volume preserving part of the flow preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. They foliate the entire phase space and are, in turn, deformed in time by Dissipation which represents their irrotational part of the flow. It is given by the gradient of a scalar function and is responsible for the emergence of the Strange Attractors. Based on our recent work on Quantum Nambu Mechanics, we provide an explicit quantization of the Lorenz attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. They satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Quantum Lorenz system give rise to an attracting ellipsoid in the 3N23 N^{2} dimensional phase space.Comment: 35 pages, 4 figures, LaTe

    Holomorphic Quantization on the Torus and Finite Quantum Mechanics

    Get PDF
    We construct explicitly the quantization of classical linear maps of SL(2,R)SL(2, R) on toroidal phase space, of arbitrary modulus, using the holomorphic (chiral) version of the metaplectic representation. We show that Finite Quantum Mechanics (FQM) on tori of arbitrary integer discretization, is a consistent restriction of the holomorphic quantization of SL(2,Z)SL(2, Z) to the subgroup SL(2,Z)/ΓlSL(2, Z)/\Gamma_l, Γl\Gamma_l being the principal congruent subgroup mod l, on a finite dimensional Hilbert space. The generators of the ``rotation group'' mod l, Ol(2)SL(2,l)O_{l}(2)\subset SL(2,l), for arbitrary values of l are determined as well as their quantum mechanical eigenvalues and eigenstates.Comment: 12 pages LaTeX (needs amssymb.sty). Version as will appear in J. Phys.

    Analytic Representation of Finite Quantum Systems

    Full text link
    A transform between functions in R and functions in Zd is used to define the analogue of number and coherent states in the context of finite d-dimensional quantum systems. The coherent states are used to define an analytic representation in terms of theta functions. All states are represented by entire functions with growth of order 2, which have exactly d zeros in each cell. The analytic function of a state is constructed from its zeros. Results about the completeness of finite sets of coherent states within a cell are derived

    Phase Effect of A General Two-Higgs-Doublet Model in bsγb\to s\gamma

    Full text link
    In a general two-Higgs-doublet model (2HDM), without the {\it ad hoc} discrete symmetries to prevent tree-level flavor-changing-neutral currents, an extra phase angle in the charged-Higgs-fermion coupling is allowed. We show that the charged-Higgs amplitude interferes destructively or constructively with the standard model amplitude depending crucially on this phase angle. The popular model I and II are special cases of our analysis. As a result of this phase angle the severe constraint on the charged-Higgs boson mass imposed by the inclusive rate of bsγb\to s\gamma from CLEO can be relaxed. We also examine the effects of this phase angle on the neutron electric dipole moment. Furthermore, we also discuss other constraints on the charged-Higgs-fermion couplings coming from measurements of B0B0ˉB^0-\bar{B^0} mixing, ρ0\rho_0, and RbR_b.Comment: LaTeX 17 pages, 3 figure

    New Physics in CP Asymmetries and Rare B Decays

    Get PDF
    We review and update the effects of physics beyond the standard model on CP asymmetries in B decays. These asymmetries can be significantly altered if there are important new-physics contributions to \bqbqbar mixing. This same new physics will therefore also contribute to rare, flavor-changing B decays. Through a study of such decays, we show that it is possible to partially distinguish the different models of new physics.Comment: 42 pages, plain TeX (macros included), 1 figure (included). A few sentences added, references updated. Present manuscript is now identical to the version accepted for publication in Phys. Rev.

    Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM

    Get PDF
    We present a phenomenological study of a CP-violating two-Higgs-doublet Model with type-II Yukawa couplings at the Large Hadron Collider (LHC). In the light of recent LHC data, we focus on the parameter space that survives the current and past experimental constraints as well as theoretical bounds on the model. Once the phenomenological scenario is set, we analyse the scope of the LHC in exploring this model through the discovery of a charged Higgs boson produced in association with a W boson, with the former decaying into the lightest neutral Higgs and a second W state, altogether yielding a b\bar b W^+W^- signature, of which we exploit the W^+W^- semileptonic decays.Comment: 37 pages, 16 figures; v2 updated treatment of LHC constraint
    corecore