465 research outputs found

    Evaluation of the diagnostic performance of PanbioTM Abbott SARS-CoV-2 rapid antigen test for the detection of COVID-19 from suspects attending ALERT center

    Get PDF
    BACKGROUND: The emergence and rapid spread of coronavirus disease 2019 (COVID-19), a potentially lethal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is causing public health issues around the world. In resource-constrained nations, rapid Abbott SARS-CoV-2 antigen test kits are critical for addressing diagnostic gaps in health institutions and community screening. However, there is no evidence or proof of diagnostic performance in Ethiopia. The aim of this study was to compare the performance of PanbioTM Abbott SARS-CoV-2antigen rapid test kit to the gold standard, RT-PCR, in COVID-19 patients with clinical symptoms suggestive of COVID-19. METHOD: A prospective, cross-sectional study was conducted between November 2021 and April 2022, on 120 suspected patients recruited from outpatient, emergency, and intensive care units in one of the tertiary hospitals in Ethiopia. Nasopharyngeal swabs were collected from suspected cases and were tested using the Abbott SARS-CoV-2 kit, a rapid diagnostic test (RDT) and compared to the reference standard RT-PCR. RESULT: The sensitivity and specificity of the RDT were 74.2% and 100%, respectively. A total of 62 samples (51.6%) were RT-PCR positive. Of these, 46 were Ag-RDT positive. Sensitivity among symptomatic patients was 79.4% (95% CI 68.3-90). The Abbot RDT and RT-PCR had a Kappa value of agreement of 0.735 (p < 0.001). These values were acceptable when compared to the WHO's suggested thresholds. CONCLUSION: The finding from this study support the use of the Abbot RDT as a diagnostic tool in COVID-19 suspects, mainly in those with higher viral loads

    Therapeutic efficacy of Chloroquine for the treatment of uncomplicated Plasmodium vivax infection in Shewa Robit, Northeast Ethiopia

    Get PDF
    Background The development of drug resistance to chloroquine is posing a challenge in the prevention and control efforts of malaria globally. Chloroquine is the first-line treatment for uncomplicated P.vivax in Ethiopia. Regular monitoring of anti-malarial drugs is recommended to help early detection of drug-resistant strains of malaria parasites before widely distributed. The emergence of P.vivax resistance to chloroquine in the country endangers the efficacy of P. vivax treatment. This study aimed to assess the therapeutic efficacy of chloroquine among uncomplicated P.vivax infections at Shewa Robit Health Center, northeast Ethiopia. Methods One-arm in vivo prospective chloroquine efficacy study was conducted from November 2020 to March 2021. Ninety participants aged between 16 months to 60 years confirmed with P.vivax mono-infection microscopically were selected and treated with a 25 mg/kg standard dose of chloroquine over three days. Thick and thin blood smears were prepared and examined. Clinical examination was performed over 28 follow-up days. Hemoglobin concentration level was measured on days 0, 14, and 28. Result Of the 90 enrolled participants, 86 (96%) completed their 28 days follow-up period. The overall cure rate of the drug was 98.8% (95% CI: 95.3-100%). All asexual stages and gametocytes were cleared within 48 hours with rapid clearance of fever. Hemoglobin concentration had significantly recovered between days 0 and 14, 0 and 28, and 14 and 28 days (P = 0.032, P<0.001, and P = 0.005), respectively. Fast resolution of clinical signs and symptoms was also observed. Severe adverse events were not recorded. Conclusion The present study revealed that chloroquine remains an efficacious and safe drug in the study setting for treating uncomplicated P.vivax in the study area. Large-scale continuous surveillance is needed to monitor the development of resistance in due time

    Corrigendum to “Counting adolescents in: the development of an adolescent health indicator framework for population-based settings”

    Get PDF
    The authors were recently made aware of an oversight such that parts of the text in the Introduction and Methods sections, which describe shortcomings in the existing literature and the methods in this work to identify frameworks and indicators, were missing attribution to published work cited elsewhere in the manuscript. To clarify, we adjust the relevant sections to fully attribute the prior work in three areas, as described below. Underlined text is additional to the original: While both school- and community-based modalities can provide nationally representative data among eligible adolescents, several shortcomings in adolescent health measurement in LMICs were noted by the GAMA Advisory Group (Reference 13 as in the original paper). First, these measurements do not equally cover all adolescent subgroups, with evidence gaps being largest for males, younger adolescents aged 10–14 years, adolescents of diverse genders, ethnicities, and religions, as well as those out of school and migrants. Second, age-disaggregated data are often lacking—due in part to incomplete age coverage—limiting their use for program planning. Third, several aspects of adolescent health are inadequately covered including mental health, substance use, injury, sexual and reproductive health among unmarried adolescents, and positive aspects of adolescent health and well-being. Fourth, the definitions and assessment methods used across adolescent health indicator frameworks are inconsistent. For example, adolescent overweight and obesity—a major cause of non-communicable diseases and a public health risk for future and intergeneration health—is inconsistently captured across indicator frameworks and strikingly absent from the SDGs (Reference 13 as in the original paper). Additional shortcomings include, current adolescent health data systems often lack intersectoral coordination beyond health (e.g., with education, water and sanitation, and social protection systems) and suffer from irregularities in coverage and timing (Reference 6 as in the original paper). Broadly, these indicator frameworks and strategy documents captured disease burden, health risks, and prominent social determinants of health during adolescence. To be congruent with the existing global recommendations and guidelines (References 3–7 as in the original paper) and global measurement efforts (References 10 and 16 as in the original paper), the indicator framework documents had to meet three inclusion criteria, as laid out by the GAMA Advisory Group (Reference 14 as in the original paper): (1) provide recommendations about the measurement of adolescents' health and well-being; (2) include indicators for “adolescents” covering the adolescent age range (10–19 years) in the whole or part; and (3) be global or regional in scope. Using the GAMA's approach (Reference 13 as in the original paper), the recommendations of Lancet Adolescent Health Commission (Reference 6 as in the original paper), and several other guidelines (References 7, 9, 12, 17–19 as in the original paper), we selected adolescent health and well-being domains based on four key aspects of adolescents in LMICs: a) population trends; b) disease burden; c) drivers of health inequality; and d) opportunity for interventions

    Counting adolescents in: the development of an adolescent health indicator framework for population-based settings

    Get PDF
    Changing realities in low- and middle-income countries (LMICs) in terms of inequalities, urbanization, globalization, migration, and economic adversity shape adolescent development and health, as well as successful transitions between adolescence and young adulthood. It is estimated that 90% of adolescents live in LMICs in 2019, but inadequate data exist to inform evidence-based and concerted policies and programs tailored to address the distinctive developmental and health needs of adolescents. Population-based data surveillance such as Health and Demographic Surveillance Systems (HDSS) and school-based surveys provide access to a well-defined population and provide cost-effective opportunities to fill in data gaps about adolescent health and well-being by collecting population-representative longitudinal data. The Africa Research Implementation Science and Education (ARISE) Network, therefore, systematically developed adolescent health and well-being indicators and a questionnaire for measuring these indicators that can be used in population-based LMIC settings. We conducted a multistage collaborative and iterative process led by network members alongside consultation with health-domain and adolescent health experts globally. Seven key domains emerged from this process: socio-demographics, health awareness and behaviors; nutrition; mental health; sexual and reproductive health; substance use; and healthcare utilization. For each domain, we generated a clear definition; rationale for inclusion; sub-domain descriptions, and a set of questions for measurement. The ARISE Network will implement the questionnaire longitudinally (i.e., at two time-points one year apart) at ten sites in seven countries in sub-Saharan Africa and two countries in Asia. Integrating the questionnaire within established population-based data collection platforms such as HDSS and school settings can provide measured experiences of young people to inform policy and program planning and evaluation in LMICs and improve adolescent health and well-being

    Complete Strain Mapping of Nanosheets of Tantalum Disulfide

    Get PDF
    Quasi-two-dimensional (quasi-2D) materials hold promise for future electronics because of their unique band structures that result in electronic and mechanical properties sensitive to crystal strains in all three dimensions. Quantifying crystal strain is a prerequisite to correlating it with the performance of the device and calls for high resolution but spatially resolved rapid characterization methods. Here, we show that using fly-scan nano X-ray diffraction, we can accomplish a tensile strain sensitivity below 0.001% with a spatial resolution of better than 80 nm over a spatial extent of 100 μm on quasi-2D flakes of 1T-TaS2. Coherent diffraction patterns were collected from a ∼100 nm thick sheet of 1T-TaS2 by scanning a 12 keV focused X-ray beam across and rotating the sample. We demonstrate that the strain distribution around micron- and submicron-sized "bubbles" that are present in the sample may be reconstructed from these images. The experiments use state-of-the-art synchrotron instrumentation and will allow rapid and nonintrusive strain mapping of thin-film samples and electronic devices based on quasi-2D materials

    Charge Condensation and Lattice Coupling Drives Stripe Formation in Nickelates

    Get PDF
    Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La_{2-x}Sr_{x}NiO_{4+δ}, in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant x-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La_{2-x}Sr_{x}NiO_{4+δ}. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity
    corecore