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Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes
a formidable task due to the intertwined nature of different degrees of freedom. This is the case for
La2−xSrxNiO4þδ, in which coupled incommensurate charge and spin stripes form at low temperatures.
Here, we use resonant x-ray photon correlation spectroscopy to study the temporal stability and domain
memory of the charge and spin stripes in La2−xSrxNiO4þδ. Although spin stripes are more spatially
correlated, charge stripes maintain a better temporal stability against temperature change. More
intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above
the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that
charge condensation is the predominant factor in the formation of stripe orders in nickelates.
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Emergent phenomena in strongly correlated materials
arise due to multifarious interactions among charge, spin,
and lattice degrees of freedom. Such complexity hampers
the ability to understand their remarkable states and realize
new functionalities [1]. Identifying dominant interaction is,
however, challenging, as different interactions act simulta-
neously and can yield complex ground states with more
than one form of order [2]. A representative phenomenon of
this type is the electronic stripes that appear in various
strongly correlated materials [3–6]. These effects have been
considered extensively in cuprate high-temperature super-
conductors, which host charge and sometimes spin stripe
order, typically with a simple factor-of-2 relationship
between the charge and spin incommensurabilities [7–9].
Nickelates also host both superconductivity and stripe order
[10–12], but no system has yet been shown to simulta-
neously host both orders. The existence of stripe order in
La4Ni3O8, which appears rather similar to superconducting
Nd1−xSrxNiO2 [13–16], does, however, support the likely
proximity of stripe order and superconductivity. While
static stripe order appears to suppress bulk 3D super-
conductivity, some researchers have suggested that stripe
fluctuations may act to promote superconductivity [17–19].
Therefore, understanding the driving forces behind charge
and spin stripe formation and dynamics in strongly

correlated materials has attracted considerable attention
and may be crucial to understanding unconventional super-
conductivity. Stripe formation has been studied in the past
through detailed measurements of stripe transition temper-
atures and correlation lengths [20–28] and associated
Landau model analysis [29,30]. The problem has also
been addressed via model Hamiltonian analysis that sug-
gested that lattice coupling might be crucial to stabilize
stripes [31,32]. The implementation of resonant x-ray
photon correlation spectroscopy (XPCS) at modern low-
emittance synchrotron sources opens new routes to directly
probe stripe formation and dynamics [33–36].
Herein, we report the first resonant XPCS experiment to

simultaneously probe charge order (CO), spin order (SO),
and lattice coupling in a stripe-ordered material, focusing
on the prototypical material La2−xSrxNiO4þδ (LSNO) with
x ¼ 0.225 and δ ¼ 0.07. Although SO is more correlated
and stable at 70 K, CO is more robust in temporal stability
against temperature changes, which we attribute to elec-
tron-phonon coupling (EPC). This is further supported by
our discovery that the CO domains are effectively pinned to
the lattice and the corresponding speckle patterns remain
highly reproducible with thermal cycling up to 250 K, well
above the transition temperature TCO. SO, however, is not
directly coupled to the lattice and loses its domain memory
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once the sample is warmed across the magnetic transition
temperature TSO. These results imply that charge conden-
sation, and its coupling to the lattice and disorder, is the
driving force behind stripe ordering.
X-ray measurements were carried out at the Coherent Soft

X-Ray (CSX) 23-ID-1 beam line at the National Syncrotron
Light Source II with x-ray energy tuned to the Ni L3 edge
[Fig. 1(a)]. The LSNO single crystal was synthesized by the

floating-zone method with a Sr concentration of x ¼ 0.225
[37]. As shown later, the CO incommensurability is
ϵ ≈ 0.27, larger than x, which is likely related to oxygen
doping, since δ ¼ 0.07 [38]. The sample’s surface normal
was close to the ½H;H; 0� direction. Thus, we made
ðH;H; LÞ the scattering plane and focused on peaks with
QCO ¼ ðϵ; ϵ; 1Þ and QSO ¼ ð1=2 − ϵ=2; 1=2 − ϵ=2; 0Þ [39].
The reciprocal lattice units (r.l.u.) is defined in terms of Q ¼
ðH;K; LÞ ¼ ð2π=a; 2π=b; 2π=cÞ within the space group I4/
mmm and a ¼ b ¼ 3.84 Å and c ¼ 12.65 Å. For the
domain memory measurements, we used a 0.5-μm-thick
Pt mask, which had been deposited on the sample in order
to reproducibly illuminate the same sample volume inde-
pendent of possible thermal drifts in the sample position
[Fig. 1(b)] [39].
We start by characterizing the superlattice peaks corre-

sponding to CO and SO at different temperatures using
standard resonant x-ray diffraction. With decreasing temper-
ature, the peak heights first increase substantially through the
transition temperatures along with enhanced correlation
lengths for both CO and SO [Figs. 1(c) and 1(d)]. Below
∼70 K, the peak heights drop and the spatial correlations are
relaxed, consistent with previous reports [26,45,46]. The
reason for this is not uniquely determined, but it may be
connected to a spin reorientation at lower temperature [27] or
the influence of spin exchange interactions [26]. Throughout
the temperature range, the correlation lengths along the
½H;H; 0� direction are much larger than those along ½0; 0; L�
and SO possesses a larger correlation length than CO
[Fig. 1(c)]. Because of the critical fluctuations and short-
range correlations near the phase transitions, the onset
temperatures TCO and TSO are not uniquely defined. We
estimate them both to occur between 96 and 114 K.
Regarding the incommensurability, the intersite Coulomb
repulsion tends to stabilize ϵ equal to the hole concentration
[47], while the commensurability effect optimizes stripe
formation at x ¼ 1=3. The actual incommensurability is a
compromise of these two factors [23]. With increasing
temperature, thermal fluctuations are expected to start to
outcompete Coulomb repulsion [45,48,49], driving the
incommensurability closer to 1=3 at higher temperature
[Fig. 1(e)].
To elucidate the temporal stabilities of CO and SO, we

employ XPCS to study the domain distribution and its
fluctuations. In XPCS, the coherent photons scattered by
different domains interfere with each other, leading to a
complex “speckle” pattern modulated by the usual diffrac-
tion line shape [33,34,36,50–52]. Figures 2(a) and 2(b) show
the representative speckles of the CO and SO superlattice
peaks at 70 K. The shape of the peak envelope is determined
by the spatial correlations and instrument geometry. In
particular, the horizontal width of the SO peak is mainly
determined by the correlations along the ½−1; 1; 0� direction,
while the vertical width is dominated by c-axis correlations,
elongating the envelope vertically. For the CO peak, the
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FIG. 1. Experimental configuration and CO and SO superlattice
peaks. (a) The instrumental setup for the measurements at CSX.
The x-ray beam is set to the Ni L3-edge energy and tuned in order
to maximize the strength of the CO and SO intensity [39]. It then
propagates through the pinhole and is scattered by the LSNO
sample onto the detector. For the domain memory study, a
0.5-μm-thick Pt mask was deposited on the sample [39].
(b) An optical micrograph of the Pt mask on the (110) surface
of a LSNO single crystal. (c) Temperature dependence of the
correlation lengths along ½H;H; 0� and ½0; 0; L� directions. The
correlation length is defined as ξ ¼ d=HWHM, where HWHM
stands for half width at half maximum in reciprocal lattice units
and d is the unit cell size in the appropriate direction [44].
(d) Temperature dependence of the peak heights evaluated from
fitting of the CO and SO superlattice peaks, which are normalized
according to their values at 60 K. The signals were fitted with a
three-dimensional Lorentzian function. (e) Incommensurability
defined by the peak position of the CO Q vector as a function of
the temperature. The shaded areas indicate the onset temperature
range for CO and SO.
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vertical width has less contribution from c-axis correlations
so that the envelope appears more isotropic. Meanwhile, the
distribution of the underlying stripe domains is encoded in
the positions of the speckles [35], and the shape of the
speckles is determined by the Fourier transform of the beam
footprint projected onto the detector. The nonzero L com-
ponent of the CO peak makes the footprint of the beam more
anisotropic. To show the speckle modulation more clearly,
we present in Figs. 2(c) and 2(d) the line cuts through the red
dashed lines in Figs. 2(a) and 2(b). The peak envelope is
estimated by two independent methods: smoothing with the
Savitzky-Golay filter and fitting with a squared Lorentzian
function. The sharp speckle modulation observed here
indicates that the fluctuations for CO and SO are slower
than the time window of the measurements, which is 1 s at
70 K [39]. Otherwise, the contrast of the interference patterns
will be significantly reduced [33].
In order to quantify the fluctuation timescale, we

measure the time dependence of the speckle patterns and
calculate the normalized one-time correlation function [33]

g2ðτÞ ¼
hIðtÞIðtþ τÞi

hIðtÞi2 ¼ 1þ βjFðτÞj2; ð1Þ

where I represents the total intensity including back-
ground, τ is the lag time, and h� � �i stands for the time
and ensemble average. The time-dependent evolution can
be extracted from the intermediate scattering function
jFðτÞj, which describes the correlation of the speckle
patterns separated by a certain time delay. In a statically
ordered system, jFðτÞj will remain unchanged, while
speckle dynamics causes it to drop as a function of the
time delay. Distinct from La2−xBaxCuO4 (LBCO), in which
the CO is static over a timescale of at least 2 h [33,34],
jFðτÞj in LSNO decays after several minutes for both CO
and SO, indicating charge and spin dynamics (Fig. 3).
Moreover, we find that CO and SO are both most stable
around 70 K when they have longest correlation lengths,
but SO is more stable than CO at 70 K. Although stripes
involve a comodulation of both charge and spin [30], we
observe that these have different thermal evolution. As the
temperature is driven away from 70 K, the temporal
stability for SO decreases faster, indicating that SO is less
stable against temperature changes. A qualitatively, but not
quantitatively, similar trend in SO was reported recently in
Ref. [36]. The longer timescales observed here may reflect
sample discrimination in strontium and oxygen composi-
tions or improved coherent flux and stability at CSX
compared to the Advanced Light Source.
From simple energetic considerations, if an order is less

temporally stable and has shorter correlation lengths, one
would expect it to be more fragile to thermal disturbance.
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FIG. 2. Speckle patterns of CO and SO. (a),(b) Representative
detector images around the CO and SO superlattice peaks
measured with a 10 μm pinhole. The white pixels arise from
the beamstop or detector errors and are omitted from the data. (c),
(d) Line cuts through the horizontal red dashed lines in (a) and (b).
The envelope of the peak is estimated by smoothing and fitting
processes that are shown as red and orange lines, respectively.
The black dashed lines are uniform fluorescent background
evaluated from fittings.
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The unexpected robustness of CO against temperature
changes indicates that CO is coupled to other degrees of
freedom which constrain the CO domains during and after
the charge condensation (Fig. 3). Such hypotheses can be
examined more deeply in terms of domain-pinning memory
effects. Since the speckle positions are primarily deter-
mined by the positions of the ordering domains, the
comparison of speckle patterns collected at 70 K before
and after cycling the sample temperature to Tcycle can
evaluate whether the domain distributions are reproduced
[35]. The usage of a Pt mask further ensures that the
illuminated sample volume is fixed throughout the thermal
cycling [Fig. 1(b)]. It turns out that the speckle patterns of
CO are rather similar with Tcycle up to 250 K, well above
TCO [Fig. 4(a)]. The SO speckles, however, change their
positions once Tcycle crosses TSO (∼100 K) [Fig. 4(b)]. This
effect can be quantified by calculating the normalized
cross-correlation function ξCC which describes the simi-
larity between two speckle patterns [35,39]. ξCC
approaches zero when the two speckle images are different,
while two identical images will give ξCC of one.
Correspondingly, we calculate ξCC for both CO and SO
speckle patterns with different Tcycle [Fig. 4(c)]. The results
again show that CO domain distributions are essentially
unchanged after thermal cycling to a temperature far above
TCO, while the SO speckle pattern loses reproducibility
after the system is driven into the disordered state.
The domain memory effect of CO is caused by coupling

to the host lattice. Local potentials arising from structural
disorder induced, for example, by Sr doping, structural
domain boundaries, or octahedral tilts provide nucleation
centers for the CO domains and effectively pin the domains

during stripe condensation. Since the average lattice struc-
ture of LSNO has translational symmetry over a length
scale smaller than CO wavelength, it cannot, itself, pin the
CO domains into reproducible locations. In charge-ordered
cuprate LBCO, the speckle pattern of CO domains loses
memory after the sample is heated across the transition
temperature from the low-temperature-orthorhombic (LTO)
phase into the high-temperature-tetragonal (HTT) phase
[35]. Thus, it is expected that the pinning landscape for CO
in LBCO is constrained by twin boundaries created by the
LTO structural distortion. In LSNO, the lattice remains in
the HTT phase and no long-range LTO distortion is
observed [53]. However, short-range stripe-related distor-
tions have been reported to persist up to high temperatures
[54]. It is possible that either these distortions or local
defects due to Sr-related doping disorder determine the
pinning landscape of LSNO in a similar manner.
The pinning effect of CO to the structural disorder also

evinces the relevance of EPC in nickelates, which has been
illustrated by the discovery of phonon anomalies and
nematic behaviors in LSNO [55–58]. It has been argued
theoretically that without EPC COwill remain dynamic and
not order [32]. For structure-driven CO, phonons soften to
zero energy and drag the valence charge along with it to
form spatial modulations. Here, however, phonons are
softened by a maximum of 20% [56], and charge stripes
are formed to reduce Coulomb interactions. EPC helps pin
preformed charge stripes according to the lattice symmetry,
promoting the static CO. The presence of EPC further
couples the CO domains to structural disorder, which
strengthens the CO against thermal fluctuations.
Consequently, when CO and SO lose correlations
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FIG. 4. Domain memory in CO but not SO. (a),(b) Representative speckle images before and after thermal cyclings, which are
indicated by the curved arrows. The open circles stand for the cycling temperatures Tcycle. For each measurement, we collected images at
70 K, changed the temperature to Tcycle, and waited for 10 min. Then the sample was cooled back to 70 K and equilibrated for 30 min
before collecting another image. For both the heating and cooling processes, the temperature ramping rate was fixed to 4 K=min. The
white bar in the first speckle image indicates 10−3 Å−1. (c) Temperature dependence of the normalized speckle cross-correlation
function ξCC. The solid and dashed lines are guides to the eye. The shaded area indicates the range of CO and SO transition temperatures.
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progressively upon heating or cooling away from 70 K, the
fluctuations of CO speckles increase more slowly (Fig. 3).
SO behaves in a different way. During the formation of

SO, the spins can align either parallel or antiparallel to their
quantization axis. This would disrupt the reproducibility of
SO speckles after thermal cycling across TSO even if the
domain walls are in the same place (Fig. 4). Moreover, the
rotational degree of freedom provides an additional fluc-
tuation channel to the ordered spins, facilitating the loss of
SO stability when driven away from 70 K (Fig. 3). This is
in line with the observation of spin reorientation in LSNO
at low temperatures [24,27,38].
The robustness of CO stability and its pinning to the

lattice demonstrate that the stripe order in LSNO is charge
driven. This directly verifies prior theoretical predictions
based on Landau theory of coupled charge and spin order
parameters [30] and may reflect that stripe order is charge
driven, in general. Our approach will be extendable to other
materials and even to other degrees of freedom such as
orbital order, bringing a powerful means to disentangle the
formation mechanisms of intertwined ground states.
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