58 research outputs found

    Spatially Constrained Organic Diquat Anolyte for Stable Aqueous Flow Batteries

    Get PDF
    Redox-active organic materials (ROMs) are becoming increasingly attractive for use in redox flow batteries as promising alternatives to traditional inorganic counterparts. However, the reported ROMs are often accompanied by challenges, including poor solubility and stability. Herein, we demonstrate that the commonly used diquat herbicides, with solubilities of >2 M in aqueous electrolytes, can be used as stable anolyte materials in organic flow batteries. When coupled with a ferrocene-derived catholyte, the flow cells with the diquat anolyte demonstrate long galvanic cycling with high capacity retention. Notably, the mechanistic underpinnings of this remarkable stability are attributed to the improved π-conjugation that originated from the near-planar molecular conformations of the spatially constrained 2,2′-bipyridyl rings, suggesting a viable structural engineering strategy for designing stable organic materials

    The lightest organic radical cation for charge storage in redox flow batteries

    Get PDF
    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways.United States. Dept. of Energy. Office of Basic Energy Sciences. Chemical Sciences, Geosciences, & Biosciences Division (Contract DE-AC02-06CH11357

    Annulated Dialkoxybenzenes as Catholyte Materials for Non‐aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution

    Full text link
    1,4‐Dimethoxybenzene derivatives are materials of choice for use as catholytes in non‐aqueous redox flow batteries, as they exhibit high open‐circuit potentials and excellent electrochemical reversibility. However, chemical stability of these materials in their oxidized form needs to be improved. Disubstitution in the arene ring is used to suppress parasitic reactions of their radical cations, but this does not fully prevent ring‐addition reactions. By incorporating bicyclic substitutions and ether chains into the dialkoxybenzenes, a novel catholyte molecule, 9,10‐bis(2‐methoxyethoxy)‐1,2,3,4,5,6,7,8‐octahydro‐1,4:5,8‐dimethanenoanthracene (BODMA), is obtained and exhibits greater solubility and superior chemical stability in the charged state. A hybrid flow cell containing BODMA is operated for 150 charge–discharge cycles with a minimal loss of capacity.A novel bicyclical substituted dialkoxy‐benzene molecule, 9,10‐bis(2‐methoxy‐ethoxy)‐1,2,3,4,5,6,7,8‐octahydro‐1,4:5,8‐dimethanenoanthracene (BODMA), is developed for use as catholyte materials in non‐aqueous redox flow batteries with greater solubility (in their neutral state) and improved chemical stability (in their charged state). A hybrid flow cell using BODMA demonstrates stable efficiencies and capacity over 150 cycles. The molecular design approach of BODMA can be inspirational for future development of redox active molecules.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139992/1/aenm201701272.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139992/2/aenm201701272-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139992/3/aenm201701272_am.pd

    Effect of the Hydrofluoroether Cosolvent Structure in Acetonitrile-Based Solvate Electrolytes on the Li^+ Solvation Structure and Li–S Battery Performance

    Get PDF
    We evaluate hydrofluoroether (HFE) cosolvents with varying degrees of fluorination in the acetonitrile-based solvate electrolyte to determine the effect of the HFE structure on the electrochemical performance of the Li–S battery. Solvates or sparingly solvating electrolytes are an interesting electrolyte choice for the Li–S battery due to their low polysulfide solubility. The solvate electrolyte with a stoichiometric ratio of LiTFSI salt in acetonitrile, (MeCN)_2–LiTFSI, exhibits limited polysulfide solubility due to the high concentration of LiTFSI. We demonstrate that the addition of highly fluorinated HFEs to the solvate yields better capacity retention compared to that of less fluorinated HFE cosolvents. Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that HFEs exhibiting a higher degree of fluorination coordinate to Li+ at the expense of MeCN coordination, resulting in higher free MeCN content in solution. However, the polysulfide solubility remains low, and no crossover of polysulfides from the S cathode to the Li anode is observed

    Effect of the Hydrofluoroether Cosolvent Structure in Acetonitrile-Based Solvate Electrolytes on the Li^+ Solvation Structure and Li–S Battery Performance

    Get PDF
    We evaluate hydrofluoroether (HFE) cosolvents with varying degrees of fluorination in the acetonitrile-based solvate electrolyte to determine the effect of the HFE structure on the electrochemical performance of the Li–S battery. Solvates or sparingly solvating electrolytes are an interesting electrolyte choice for the Li–S battery due to their low polysulfide solubility. The solvate electrolyte with a stoichiometric ratio of LiTFSI salt in acetonitrile, (MeCN)_2–LiTFSI, exhibits limited polysulfide solubility due to the high concentration of LiTFSI. We demonstrate that the addition of highly fluorinated HFEs to the solvate yields better capacity retention compared to that of less fluorinated HFE cosolvents. Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that HFEs exhibiting a higher degree of fluorination coordinate to Li+ at the expense of MeCN coordination, resulting in higher free MeCN content in solution. However, the polysulfide solubility remains low, and no crossover of polysulfides from the S cathode to the Li anode is observed

    Comparison of Sugar Molecule Decomposition through Glucose and Fructose: A High-Level Quantum Chemical Study

    No full text
    Efficient chemical conversion of biomass is essential to produce sustainable energy and industrial chemicals. Industrial level conversion of glucose to useful chemicals, such as furfural, hydroxymethylfurfural, and levulinic acid, is a major step in the biomass conversion but is difficult because of the formation of undesired products and side reactions. To understand the molecular level reaction mechanisms involved in the decomposition of glucose and fructose, we have carried out high-level quantum chemical calculations [Gaussian-4 (G4) theory]. Selective 1,2-dehydration, keto–enol tautomerization, isomerization, retro-aldol condensation, and hydride shifts of glucose and fructose molecules were investigated. Detailed kinetic and thermodynamic analyses indicate that, for acyclic glucose and fructose molecules, the dehydration and isomerization require larger activation barriers compared to the retro-aldol reaction at 298 K in neutral medium. The retro-aldol reaction results in the formation of C2 and C4 species from glucose and C3 species from fructose. The formation of the most stable C3 species, dihydroxyacetone from fructose, is thermodynamically downhill. The 1,3-hydride shift leads to the cleavage of the C–C bond in the acyclic species; however, the enthalpy of activation is significantly higher (50–55 kcal/mol) than that of the retro-aldol reaction (38 kcal/mol) mainly because of the sterically hindered distorted four-membered transition state compared to the hexa-membered transition state in the retro-aldol reaction. Both tautomerization and dehydration are catalyzed by a water molecule in aqueous medium; however, water has little effect on the retro-aldol reaction. Isomerization of glucose to fructose and glyceraldehyde to dihydroxyacetone proceeds through hydride shifts that require an activation enthalpy of about 40 kcal/mol at 298 K in water medium. This investigation maps out accurate energetics of the decomposition of glucose and fructose molecules that is needed to help find more efficient catalyts for the conversion of hexose to useful chemicals

    Ionic Dynamics of the Charge Carrier in Layered Solid Materials for Mg Rechargeable Batteries

    No full text
    Multivalent-ion batteries have attracted growing attention due to their high theoretical energy density that potentially outperforms Li-ion batteries. One of the critical challenges of realizing a multivalent-ion battery is the strong polarization that results in the sluggish intercalation of ions in the host lattice, which motivates a fundamental understanding of multivalent-ion dynamics in solid-state materials. In this contribution, we investigate the diffusion mechanisms of divalent ions in a novel Mg anode coating, BiOCl, using first-principles informed learning-on-the-fly molecular dynamics. Based on nanosecond-scale dynamics observations, we gained insights into the concerted diffusion mechanism of Mg cation site-to-site hopping facilitated by synchronous anion rotational motion. Furthermore, we compute the Mg-ion diffusion in additional candidate host structures screened from available layered materials space. The results suggest the co-operative divalent cation–anion motion is likely a common phenomenon in layered oxyhalide structures. Our findings provide a new perspective on how to enhance multivalent-ion diffusion in layered materials

    Exploring Meerwein–Ponndorf–Verley Reduction Chemistry for Biomass Catalysis Using a First-Principles Approach

    No full text
    Liquid phase catalytic hydrogenation of decomposition products of sugar molecules is challenging, but essential to produce platform chemicals and green chemicals from biomass. The Meerwein–Ponndorf–Verley (MPV) reduction chemistry is an excellent choice for the hydrogenation of keto compounds. The energy landscapes for the liquid phase catalytic hydrogenation of ethyl levulinate (EL) and furfural (FF) by Sn­(IV) and Zr­(IV) zeolite-like catalytic sites utilizing the hydrogen atoms from an isopropanol (IPA) solvent are explored using quantum chemical methods. The computed apparent activation free energy for the catalytic hydrogenation of EL by a Sn­(IV) zeolite-like catalyst model site is (21.9 kcal/mol), which is close to the Al­(III)-isopropoxide catalyzed (20.7 kcal/mol) EL hydrogenation indicating the similar efficiency of the Sn­(IV) zeolite-like catalyst compared with the Al­(III) catalyst used in the traditional MPV reactions. The catalytic efficiency of metal isopropoxides for the catalytic hydrogenation of EL is computed to be Al­(III) > Sn­(IV) > Zr­(IV) in IPA solution, in agreement with experiment. Calculations were also performed with furfuryl alcohol as the source for hydrogen for the conversion of EL to γ-valerolactone using the Sn­(IV) catalytic site. The barrier (22.7 kcal/mol) suggests a hydrogenation using aromatic primary alcohol as a hydrogen donor and using a Sn­(IV) catalyst is feasible. In terms of reaction mechanisms, an intramolecular hydride transfer through a six membered transition state was found to be the turnover controlling transition state of liquid phase catalytic hydrogenation of carbonyl compounds considered in this study
    • …
    corecore