1,190 research outputs found

    Symplectic gauge fields and dark matter

    Get PDF
    The dynamics of symplectic gauge fields provides a consistent framework for fundamental interactions based on spin three gauge fields. One remarkable property is that symplectic gauge fields only have minimal couplings with gravitational fields and not with any other field of the Standard Model. Interactions with ordinary matter and radiation can only arise from radiative corrections. In spite of the gauge nature of symplectic fields they acquire a mass by the Coleman-Weinberg mechanism which generates Higgs-like mass terms where the gravitational field is playing the role of a Higgs field. Massive symplectic gauge fields weakly interacting with ordinary matter are natural candidates for the dark matter component of the Universe.Comment: 16 page

    Vacuum Boundary Effects

    Full text link
    The effect of boundary conditions on the vacuum structure of quantum field theories is analysed from a quantum information viewpoint. In particular, we analyse the role of boundary conditions on boundary entropy and entanglement entropy. The analysis of boundary effects on massless free field theories points out the relevance of boundary conditions as a new rich source of information about the vacuum structure. In all cases the entropy does not increase along the flow from the ultraviolet to the infrared.Comment: 10 page

    Boundary conditions: The path integral approach

    Full text link
    The path integral approach to quantum mechanics requires a substantial generalisation to describe the dynamics of systems confined to bounded domains. Non-local boundary conditions can be introduced in Feynman's approach by means of boundary amplitude distributions and complex phases to describe the quantum dynamics in terms of the classical trajectories. The different prescriptions involve only trajectories reaching the boundary and correspond to different choices of boundary conditions of selfadjoint extensions of the Hamiltonian. One dimensional particle dynamics is analysed in detail.Comment: 8 page

    Attractive and Repulsive Casimir Vacuum Energy with General Boundary Conditions

    Get PDF
    The infrared behavior of quantum field theories confined in bounded domains is strongly dependent on the shape and structure of space boundaries. The most significant physical effect arises in the behaviour of the vacuum energy. The Casimir energy can be attractive or repulsive depending on the nature of the boundary. We calculate the vacuum energy for a massless scalar field confined between two homogeneous parallel plates with the most general type of boundary conditions depending on four parameters. The analysis provides a powerful method to identify which boundary conditions generate attractive or repulsive Casimir forces between the plates. In the interface between both regimes we find a very interesting family of boundary conditions which do not induce any type of Casimir force. We also show that the attractive regime holds far beyond identical boundary conditions for the two plates required by the Kenneth-Klich theorem and that the strongest attractive Casimir force appears for periodic boundary conditions whereas the strongest repulsive Casimir force corresponds to anti-periodic boundary conditions. Most of the analysed boundary conditions are new and some of them can be physically implemented with metamaterials.Comment: 21 pages, 11 figure

    Vacuum Nodes and Anomalies in Quantum Theories

    Get PDF
    We show that nodal points of ground states of some quantum systems with magnetic interactions can be identified in simple geometric terms. We analyse in detail two different archetypical systems: i) a planar rotor with a non-trivial magnetic flux Φ\Phi, ii) Hall effect on a torus. In the case of the planar rotor we show that the level repulsion generated by any reflection invariant potential VV is encoded in the nodal structure of the unique vacuum for θ=π\theta=\pi. In the second case we prove that the nodes of the first Landau level for unit magnetic charge appear at the crossing of the two non-contractible circles α−\alpha_-, β−\beta_- with holonomies hα−(A)=hβ−(A)=−1h_{\alpha_-}(A)= h_{\beta_-}(A)=-1 for any reflection invariant potential VV. This property illustrates the geometric origin of the quantum translation anomaly.Comment: 14 pages, 2 ps-figures, to appear in Commun. Math. Phy

    Non-analyticities in three-dimensional gauge theories

    Full text link
    Quantum fluctuations generate in three-dimensional gauge theories not only radiative corrections to the Chern-Simons coupling but also non-analytic terms in the effective action. We review the role of those terms in gauge theories with massless fermions and Chern-Simons theories. The explicit form of non-analytic terms turns out to be dependent on the regularization scheme and in consequence the very existence of phenomena like parity and framing anomalies becomes regularization dependent. In particular we find regularization regimes where both anomalies are absent. Due to the presence of non-analytic terms the effective action becomes not only discontinuous but also singular for some background gauge fields which include sphalerons. The appearence of this type of singularities is linked to the existence of nodal configurations in physical states and tunneling suppression at some classical field configurations. In the topological field theory the number of physical states may also become regularization dependent. Another consequence of the peculiar behaviour of three-dimensional theories under parity odd regularizations is the existence of a simple mechanism of generation of a mass gap in pure Yang-Mills theory by a suitable choice of regularization scheme. The generic value of this mass does agree with the values obtained in Hamiltonian and numerical analysis. Finally, the existence of different regularization regimes unveils the difficulties of establishing a Zamolodchikov c-theorem for three-dimensional field theories in terms of the induced gravitational Chern-Simons couplings.Comment: 21 pages; Contribution to Ian Kogan Memorial Collection, ``From Fields to Strings: Circumnavigating Theoretical Physics'

    Casimir Effect and Global Theory of Boundary Conditions

    Full text link
    The consistency of quantum field theories defined on domains with external borders imposes very restrictive constraints on the type of boundary conditions that the fields can satisfy. We analyse the global geometrical and topological properties of the space of all possible boundary conditions for scalar quantum field theories. The variation of the Casimir energy under the change of boundary conditions reveals the existence of singularities generically associated to boundary conditions which either involve topology changes of the underlying physical space or edge states with unbounded below classical energy. The effect can be understood in terms of a new type of Maslov index associated to the non-trivial topology of the space of boundary conditions. We also analyze the global aspects of the renormalization group flow, T-duality and the conformal invariance of the corresponding fixed points.Comment: 11 page
    • …
    corecore