10 research outputs found

    A hybrid modular approach for dynamic fault tree analysis

    Get PDF
    YesOver the years, several approaches have been developed for the quantitative analysis of dynamic fault trees (DFTs). These approaches have strong theoretical and mathematical foundations; however, they appear to suffer from the state-space explosion and high computational requirements, compromising their efficacy. Modularisation techniques have been developed to address these issues by identifying and quantifying static and dynamic modules of the fault tree separately by using binary decision diagrams and Markov models. Although these approaches appear effective in reducing computational effort and avoiding state-space explosion, the reliance of the Markov chain on exponentially distributed data of system components can limit their widespread industrial applications. In this paper, we propose a hybrid modularisation scheme where independent sub-trees of a DFT are identified and quantified in a hierarchical order. A hybrid framework with the combination of algebraic solution, Petri Nets, and Monte Carlo simulation is used to increase the efficiency of the solution. The proposed approach uses the advantages of each existing approach in the right place (independent module). We have experimented the proposed approach on five independent hypothetical and industrial examples in which the experiments show the capabilities of the proposed approach facing repeated basic events and non-exponential failure distributions. The proposed approach could provide an approximate solution to DFTs without unacceptable loss of accuracy. Moreover, the use of modularised or hierarchical Petri nets makes this approach more generally applicable by allowing quantitative evaluation of DFTs with a wide range of failure rate distributions for basic events of the tree.This work was supported in part by the Dependability Engineering Innovation for Cyber Physical Systems (CPS) (DEIS) H2020 Project under Grant 732242, and in part by the LIVEBIO: Light-weight Verification for Synthetic Biology Project under Grant EPSRC EP/R043787/1

    Performance evaluation and design for variable threshold alarm systems through semi-Markov process

    Get PDF
    YesIn large industrial systems, alarm management is one of the most important issues to improve the safety and efficiency of systems in practice. Operators of such systems often have to deal with a numerous number of simultaneous alarms. Different kinds of thresholding or filtration are applied to decrease alarm nuisance and improve performance indices, such as Averaged Alarm Delay (ADD), Missed Alarm and False Alarm Rates (MAR and FAR). Among threshold-based approaches, variable thresholding methods are well-known for reducing the alarm nuisance and improving the performance of the alarm system. However, the literature suffers from the lack of an appropriate method to assess performance parameters of Variable Threshold Alarm Systems (VTASs). This study introduces two types of variable thresholding and proposes a novel approach for performance assessment of VTASs using Priority-AND gate and semi-Markov process. Application of semi-Markov process allows the proposed approach to consider industrial measurements with non-Gaussian distributions. In addition, the paper provides a genetic algorithm based optimized design process for optimal parameter setting to improve performance indices. The effectiveness of the proposed approach is illustrated via three numerical examples and through a comparison with previous studies.Noavaran Electronic Adar Sameh company [Grant NO: IRAM17S1]

    Safety + AI: A novel approach to update safety models using artificial intelligence

    Get PDF
    YesSafety-critical systems are becoming larger and more complex to obtain a higher level of functionality. Hence, modeling and evaluation of these systems can be a difficult and error-prone task. Among existing safety models, Fault Tree Analysis (FTA) is one of the well-known methods in terms of easily understandable graphical structure. This study proposes a novel approach by using Machine Learning (ML) and real-time operational data to learn about the normal behavior of the system. Afterwards, if any abnormal situation arises with reference to the normal behavior model, the approach tries to find the explanation of the abnormality on the fault tree and then share the knowledge with the operator. If the fault tree fails to explain the situation, a number of different recommendations, including the potential repair of the fault tree, are provided based on the nature of the situation. A decision tree is utilized for this purpose. The effectiveness of the proposed approach is shown through a hypothetical example of an Aircraft Fuel Distribution System (AFDS).DEIS H2020 Project under Grant 73224

    Toward Improving Confidence in Autonomous Vehicle Software: A Study on Traffic Sign Recognition Systems

    Get PDF
    YesThis article proposes an approach named SafeML II, which applies empirical cumulative distribution function-based statistical distance measures in a designed human-in-the loop procedure to ensure the safety of machine learning-based classifiers in autonomous vehicle software. The application of artificial intelligence (AI) and data-driven decision-making systems in autonomous vehicles is growing rapidly. As autonomous vehicles operate in dynamic environments, the risk that they can face an unknown observation is relatively high due to insufficient training data, distributional shift, or cyber-security attack. Thus, AI-based algorithms should make dependable decisions to improve their interpretation of the environment, lower the risk of autonomous driving, and avoid catastrophic accidents. This paper proposes an approach named SafeML II, which applies empirical cumulative distribution function (ECDF)-based statistical distance measures in a designed human-in-the-loop procedure to ensure the safety of machine learning-based classifiers in autonomous vehicle software. The approach is model-agnostic and it can cover various machine learning and deep learning classifiers. The German Traffic Sign Recognition Benchmark (GTSRB) is used to illustrate the capabilities of the proposed approach.This work was supported by the Secure and Safe MultiRobot Systems (SESAME) H2020 Project under Grant Agreement 101017258

    SafeDrones: Real-Time Reliability Evaluation of UAVs using Executable Digital Dependable Identities

    Full text link
    The use of Unmanned Arial Vehicles (UAVs) offers many advantages across a variety of applications. However, safety assurance is a key barrier to widespread usage, especially given the unpredictable operational and environmental factors experienced by UAVs, which are hard to capture solely at design-time. This paper proposes a new reliability modeling approach called SafeDrones to help address this issue by enabling runtime reliability and risk assessment of UAVs. It is a prototype instantiation of the Executable Digital Dependable Identity (EDDI) concept, which aims to create a model-based solution for real-time, data-driven dependability assurance for multi-robot systems. By providing real-time reliability estimates, SafeDrones allows UAVs to update their missions accordingly in an adaptive manner

    SafeML: Safety Monitoring of Machine Learning Classifiers Through Statistical Difference Measures

    Get PDF
    Ensuring safety and explainability of machine learning (ML) is a topic of increasing relevance as data-driven applications venture into safety-critical application domains, traditionally committed to high safety standards that are not satisfied with an exclusive testing approach of otherwise inaccessible black-box systems. Especially the interaction between safety and security is a central challenge, as security violations can lead to compromised safety. The contribution of this paper to addressing both safety and security within a single concept of protection applicable during the operation of ML systems is active monitoring of the behavior and the operational context of the data-driven system based on distance measures of the Empirical Cumulative Distribution Function (ECDF). We investigate abstract datasets (XOR, Spiral, Circle) and current security-specific datasets for intrusion detection (CICIDS2017) of simulated network traffic, using distributional shift detection measures including the Kolmogorov-Smirnov, Kuiper, Anderson-Darling, Wasserstein and mixed Wasserstein-Anderson-Darling measures. Our preliminary findings indicate that there is a meaningful correlation between ML decisions and the ECDF-based distances measures of the input features. Thus, they can provide a confidence level that can be used for a) analyzing the applicability of the ML system in a given field (safety/security) and b) analyzing if the field data was maliciously manipulated. (Our preliminary code and results are available at https://github.com/ISorokos/SafeML.
    corecore