2,134 research outputs found
The drying of sewage sludge by immersion frying
The objective of this work was to dry sewage sludge using a fry-drying process. The frying experiments were carried out in commercial fryers modified by adding thermocouples to the setup. During frying, typical drying curves were obtained and it was verified that, in relation to the parameters: oil temperature, oil type and shape of the sample, the shape factor the most effect on the drying rate, at least within the range chosen for the variables studied. Oil uptake and calorific value were also analyzed. The calorific value of the samples increased with frying time, reaching values around 24MJ/kg after 600s of frying (comparable to biocombustibles such as wood and sugarcane bagasse). The process of immersion frying showed great potential for drying materials, especially sewage sludge, obtaining a product with a high energy content, thereby increasing its value as a combustible
AM-FFF of Objects Using Commercial PLA Based Shape Memory Polymer Printed by an Open-Source 3D Printer
The 4D additive manufacturing processes are considered today as the "next big thing" in R&D. The aim of this research is to provide two examples of commercial PLA based shape memory polymer (SMP) objects printed on an open-source 3D printer in order to proof the feasibility of such novel 4D printing process. To that purpose, a PLA based filament of eSUN (4D filament e4D-1​white, SMP) was chosen, and two applications, a spring and a vase, were designed by 3D-printing with additive manufacturing (AM) fused filament fabrication (FFF) technique. The 4D-printed objects were successfully produced, the shape memory effect and their functionality were demonstrated by achieving the shape-memory cycle of programming, storage and recovery
In vitro culture with gemcitabine augments death receptor and NKG2D ligand expression on tumour cells
Much effort has been made to try to understand the relationship between chemotherapeutic treatment of cancer and the immune system. Whereas much of that focus has been on the direct effect of chemotherapy drugs on immune cells and the release of antigens and danger signals by malignant cells killed by chemotherapy, the effect of chemotherapy on cells surviving treatment has often been overlooked. In the present study, tumour cell lines: A549 (lung), HCT116 (colon) and MCF-7 (breast), were treated with various concentrations of the chemotherapeutic drugs cyclophosphamide, gemcitabine (GEM) and oxaliplatin (OXP) for 24 hours in vitro. In line with other reports, GEM and OXP upregulated expression of the death receptor CD95 (fas) on live cells even at sub-cytotoxic concentrations. Further investigation revealed that the increase in CD95 in response to GEM sensitised the cells to fas ligand treatment, was associated with increased phosphorylation of stress activated protein kinase/c-Jun N-terminal kinase and that other death receptors and activatory immune receptors were co-ordinately upregulated with CD95 in certain cell lines. The upregulation of death receptors and NKG2D ligands together on cells after chemotherapy suggest that although the cells have survived preliminary treatment with chemotherapy they may now be more susceptible to immune cell-mediated challenge. This re-enforces the idea that chemotherapy-immunotherapy combinations may be useful clinically and has implications for the make-up and scheduling of such treatments
Resource Utilization Due to Breakthrough Pain in Patients With Chronic Painful Conditions
Objectives Primary: To capture healthcare resource consumption and work loss in a population of patients with chronic pain who have pain flares from one or more non-cancer conditions.
Secondary: To explore the relationship between anxiety, depression, and pain in this population
Perception of Breakthrough Pain in Patients with Chronic Painful Conditions
Objective: To understand how patients with chronic non-cancer pain define and describe pain flares
The key neuroendocrine regulators of the onset of puberty in the Atlantic bluefin tuna (Thunnus thynnus)
Recently, significant progress on spawning induction in captive bluefin tuna (BFT, Thunnus thynnus), has been achieved providing the basis for the species' domestication. To further promote the development of a self- sustained BFT aquaculture, we investigated first sexual maturity in BFT reared from an immature stage in captivity. Accordingly, our major objectives were to evaluate: (i) maturational status of the brain-pituitary-gonadal (BPG) axis, and (ii) responsiveness of the BPG to exogenous hormones. Special emphasis was given to characterize the gonadotropins follicle stimulating hormone (FSH) and luteinizing hormone (LH) that act as central regulators of gonadal development and gamete maturation.
The growth parameters recorded for the captive BFT juveniles are consistent with the length-weight relationship established for wild Mediterranean BFT stocks. The histological analyses of the gonads indicate advanced sexual maturation in BFT males compared to females, yet it is not yet clear whether this phenomenon typifies wild stocks or is induced due to the culture conditions. The hormone measurements show expression and accumulation of both gonadotropins in the pituitaries of immature and mature BFT. The pituitary LH content increased concomitantly with the age of the fish, exhibiting sex dimorphic patterns (i.e. 3-fold higher levels in females) in adult but not in juvenile BFT. The pituitary FSH levels, however, were elevated in 2Y immature males and in fully mature adults. Comparable to mammals, the intra-pituitary FSH/LH ratio was found to be higher (>1) in sexually immature than in maturing or pubertal BFT. Nevertheless, in the 3Y BFT females, which were all immature, the onset of puberty appears to require some other prerequisites, such as a rise in the LH storage above a minimal threshold. Our in vitro trials further demonstrated the capacity of rFSH and to a lesser extent that of rLH to stimulate cell proliferation in the immature ovarian and testicular fragments. Both rFSH and rLH have failed to stimulate steroidogenesis, yet pre-treatment with KiSS containing EVAc implants appeared to potentiate FSH-stimulated steroidogenesis in the immature testes. On the other hand, the expression levels of both the GtH-R and IGF I genes in the testicular fragments, derived from BFT juveniles and further exposed to the rLH treatment, showed dose-dependent pattern.
Future studies testing the effects of captivity and hormone-based treatments on precocious maturity at relatively small body size are expected to facilitate the handling in confined environments, and to greatly improve the cost-efficiency of BFT farming.Postprin
Selected Applications of Stimuli-Responsive Polymers: 4D Printing by the Fused Filament Fabrication Technology
In the past few years four-dimensional (4D) printing technologies have attained worldwide interest and they are now considered the "next big thing". The aim of this research is to provide three selected examples of stimuli-responsive polymer (SRP) applications additively manufactured (AM) by the fused filament fabrication (FFF) technique. To that end, a CCT BLUE filament of thermo-responsive polymer was chosen to produce a water temperature indicator, which changes colour from blue to white when temperature increases; a CCU RED filament of photo-responsive polymer was used to produce a sunlight / UV indicator bracelet; a transparent PLA CLEAR polymer, a CCU RED photo-responsive polymer, and an electrical conductive PLA polymer were selected to produce a smart business card stand. The temperature indicator capability was analysed based on examining colour changes as a function of temperature changes. The sunlight/UV indicator capability was analysed based on the inspection of colour change as a function of absorbed sun/ultraviolet light. The electrical conductivity of the conductive PLA polymer was examined by performing resistance measurements. All three objects were successfully produced and their functionality was demonstrated. We hope that these examples will catalyse the expansion of FFF 4D printed SRP applications, as much work remains to be done in designing the parts and developing FFF printing parameters that take advantage of the stimuli-responsive materials currently being developed for FFF technology
A biophysical model of cell adhesion mediated by immunoadhesin drugs and antibodies
A promising direction in drug development is to exploit the ability of
natural killer cells to kill antibody-labeled target cells. Monoclonal
antibodies and drugs designed to elicit this effect typically bind cell-surface
epitopes that are overexpressed on target cells but also present on other
cells. Thus it is important to understand adhesion of cells by antibodies and
similar molecules. We present an equilibrium model of such adhesion,
incorporating heterogeneity in target cell epitope density and epitope
immobility. We compare with experiments on the adhesion of Jurkat T cells to
bilayers containing the relevant natural killer cell receptor, with adhesion
mediated by the drug alefacept. We show that a model in which all target cell
epitopes are mobile and available is inconsistent with the data, suggesting
that more complex mechanisms are at work. We hypothesize that the immobile
epitope fraction may change with cell adhesion, and we find that such a model
is more consistent with the data. We also quantitatively describe the parameter
space in which binding occurs. Our results point toward mechanisms relating
epitope immobility to cell adhesion and offer insight into the activity of an
important class of drugs.Comment: 13 pages, 5 figure
Bistability in Apoptosis by Receptor Clustering
Apoptosis is a highly regulated cell death mechanism involved in many
physiological processes. A key component of extrinsically activated apoptosis
is the death receptor Fas, which, on binding to its cognate ligand FasL,
oligomerize to form the death-inducing signaling complex. Motivated by recent
experimental data, we propose a mathematical model of death ligand-receptor
dynamics where FasL acts as a clustering agent for Fas, which form locally
stable signaling platforms through proximity-induced receptor interactions.
Significantly, the model exhibits hysteresis, providing an upstream mechanism
for bistability and robustness. At low receptor concentrations, the bistability
is contingent on the trimerism of FasL. Moreover, irreversible bistability,
representing a committed cell death decision, emerges at high concentrations,
which may be achieved through receptor pre-association or localization onto
membrane lipid rafts. Thus, our model provides a novel theory for these
observed biological phenomena within the unified context of bistability.
Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our
model also suggests a mechanism by which cells may function as bistable
life/death switches independently of any such dynamics in their downstream
components. Our results highlight the role of death receptors in deciding cell
fate and add to the signal processing capabilities attributed to receptor
clustering.Comment: Accepted by PLoS Comput Bio
- …