26 research outputs found

    Rodent-borne Trypanosoma from cities and villages of Niger and Nigeria : a special role for the invasive genus Rattus ?

    No full text
    Although they are known to sometimes infect humans, atypical trypanosomes are very poorly documented, especially in Africa where one lethal case has yet been described. Here we conducted a survey of rodent-borne Trypanosoma in 19 towns and villages of Niger and Nigeria, with a special emphasis on Niamey, the capital city of Niger. The 1298 rodents that were captured yielded 189 qPCR-positive animals from 14 localities, thus corresponding to a 14.6% overall prevalence. Rats, especially black rats, displayed particularly elevated prevalence (27.4%), with some well sampled sites showing 40-50% and up to 68.8% of Trypanosoma-carrying individuals. Rattus were also characterized by significantly lower Ct values than in the other non-Rattus species. DNA sequences could be obtained for 43 rodent-borne Trypanosoma and corresponded to 41 T. lewisi (all from Rattus) and 2 T. microti (from Cricetomys gambianus). These results, together with data compiled from the available literature, suggest that Rattus may play a particular role for the maintaining and circulation of Trypanosoma, especially T. lewisi, in Africa. Taken into account its strong abilities to invade coastal and inland regions of the continent, we believe that this genus deserves a particular attention in regards to potentially under-looked but emerging atypical trypanosome-related diseases

    Contemporary evolution of immunity during range expansion of two invasive rodents in Senegal

    No full text
    Biological invasions provide unique opportunities for studying life history trait changes over contemporary time scales. As spatial spread may be related to changes in parasite communities, several hypotheses (such as the evolution of increased competitive ability (EICA) or EICA-refined hypotheses) suggest immune changes in invasive species along invasion gradients. Although native hosts may be subject to similar changes in parasite selection pressures, their immune responses have been rarely investigated in invasion contexts. In this study, we evaluated immune variations for invasive house mice Mus musculus domesticus, invasive black rats Rattus rattus and native rodents Mastomys erythroleucus and Mastomys natalensis along well-characterised invasion gradients in Senegal. We focused on antibody-mediated (natural antibodies and complement) and inflammatory (haptoglobin) responses. One invasion route was considered for each invasive species, and environmental conditions were recorded. Natural-antibody mediated responses increased between sites of long-established invasion and recently invaded sites only in house mice. Both invasive species exhibited higher inflammatory responses at the invasion front than in sites of long-established invasion. The immune responses of native species did not change with the presence of invasive species. These patterns of immune variations do not support the EICA and EICA refined hypotheses, and they rather suggest a higher risk of exposure to parasites on the invasion front. Altogether, these results provide a first basis to further assess the role of immune changes in invasion success

    Contemporary variations of immune responsiveness during range expansion of two invasive rodents in Senegal

    No full text
    Biological invasions provide unique opportunities for studying life history trait changes over contemporary time scales. As spatial spread may be related to changes in parasite communities, several hypotheses (such as the evolution of increased competitive ability (EICA) or EICA-refined hypotheses) suggest immune changes in invasive species along invasion gradients. Although native hosts may be subject to similar changes in parasite selection pressures, their immune responses have been rarely investigated in invasion contexts. In this study, we evaluated immune variations for invasive house mice Mus musculus domesticus, invasive black rats Rattus rattus and native rodents Mastomys erythroleucus and Mastomys natalensis along well-characterised invasion gradients in Senegal. We focused on antibody-mediated (natural antibodies and complement) and inflammatory (haptoglobin) responses. One invasion route was considered for each invasive species, and environmental conditions were recorded. Natural-antibody mediated responses increased between sites of long-established invasion and recently invaded sites only in house mice. Both invasive species exhibited higher inflammatory responses at the invasion front than in sites of long-established invasion. The immune responses of native species did not change with the presence of invasive species. These patterns of immune variations do not support the EICA and EICA refined hypotheses, and they rather suggest a higher risk of exposure to parasites on the invasion front. Altogether, these results provide a first basis to further assess the role of immune changes in invasion success

    Range expansion of the invasive house mouse Mus musculus domesticus in Senegal, West Africa : a synthesis of trapping data over three decades, 1983-2014

    No full text
    The worldwide intensification of human-associated exchanges favours the multiplication of biological invasions. Among mammals, rodent species, including the house mouse Mus musculus, are identified as major invaders with profound impacts on native biodiversity, human health and activities. Though contemporary rodent invasions are described on several islands, there are few data describing ongoing house mouse invasions in continental areas. We first outline the known picture of the distribution of the house mouse in Africa. We then describe the ongoing range expansion of the house mouse in Senegal, in order to update its distribution area, assess the location of the invasion front, describe the spatio-temporal dynamics of the invasion at the country scale and evaluate its impact on native small mammal communities. We briefly review the worldwide status of the house mouse, with special focus on its situation in Africa. Focusing on Senegal, we then use historical records and a large body of spatio-temporal indoor trapping data obtained from small mammal communities over the last 30 years to analyse the invasion dynamics of the subspecies at the scale of the country. The geographic range of the invasive house mouse is surprisingly poorly known in Africa. In Senegal, we document a large range expansion of the subspecies in human settlements over the whole country within the last 30 years. The invasion is still ongoing further east and south within the country, and has major consequences for small mammal communities and thus probably for risks associated with zoonotic diseases
    corecore