83 research outputs found

    Immunotherapies against HER2-Positive Breast Cancer

    Get PDF
    Immunotherapy; Resistance; VaccinesImmunoteràpia; Resistència; VacunesInmunoterapia; Resistencia; VacunasBreast cancer is the leading cause of cancer-related deaths among women worldwide. HER2-positive breast cancer, which represents 15–20% of all cases, is characterized by the overexpression of the HER2 receptor. Despite the variety of treatments available for HER2-positive breast cancer, both targeted and untargeted, many patients do not respond to therapy and relapse and eventually metastasize, with a poor prognosis. Immunotherapeutic approaches aim to enhance the antitumor immune response to prevent tumor relapse and metastasis. Several immunotherapies have been approved for solid tumors, but their utility for HER2-positive breast cancer has yet to be confirmed. In this review, we examine the different immunotherapeutic strategies being tested in HER2-positive breast cancer, from long-studied cancer vaccines to immune checkpoint blockade, which targets immune checkpoints in both T cells and tumor cells, as well as the promising adoptive cell therapy in various forms. We discuss how some of these new approaches may contribute to the prevention of tumor progression and be used after standard-of-care therapies for resistant HER2-positive breast tumors, highlighting the benefits and drawbacks of each. We conclude that immunotherapy holds great promise for the treatment of HER2-positive tumors, with the potential to completely eradicate tumor cells and prevent the progression of the disease.This research was funded by Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III

    AXL – a new player in resistance to HER2 blockade

    Get PDF
    Cancer; HER2 disease; ResistanceCàncer; Malaltia HER2; ResistènciaCáncer; Enfermedad HER2; ResistenciaHER2 is a driver in solid tumors, mainly breast, oesophageal and gastric cancer, through activation of oncogenic signaling pathways such as PI3K or MAPK. HER2 overexpression associates with aggressive disease and poor prognosis. Despite targeted anti-HER2 therapy has improved outcomes and is the current standard of care, resistance emerge in some patients, requiring additional therapeutic strategies. Several mechanisms, including the upregulation of receptors tyrosine kinases such as AXL, are involved in resistance. AXL signaling leads to cancer cell proliferation, survival, migration, invasion and angiogenesis and correlates with poor prognosis. In addition, AXL overexpression accompanied by a mesenchymal phenotype result in resistance to chemotherapy and targeted therapies. Preclinical studies show that AXL drives anti-HER2 resistance and metastasis through dimerization with HER2 and activation of downstream pathways in breast cancer. Moreover, AXL inhibition restores response to HER2 blockade in vitro and in vivo. Limited data in gastric and oesophageal cancer also support these evidences. Furthermore, AXL shows a strong value as a prognostic and predictive biomarker in HER2+ breast cancer patients, adding a remarkable translational relevance. Therefore, current studies enforce the potential of co-targeting AXL and HER2 to overcome resistance and supports the use of AXL inhibitors in the clinic

    Antitumor activity of the PI3K δ-sparing inhibitor MEN1611 in PIK3CA mutated, trastuzumab-resistant HER2 + breast cancer

    Get PDF
    PI3K inhibitor; PIK3CA mutations; Trastuzumab resistanceInhibidor de PI3K; Mutacions PIK3CA; Resistència al trastuzumabInhibidor de PI3K; Mutaciones PIK3CA; Resistencia a trastuzumabPurpose Dysregulation of the PI3K pathway is one of the most common events in breast cancer. Here we investigate the activity of the PI3K inhibitor MEN1611 at both molecular and phenotypic levels by dissecting and comparing its profile and efficacy in HER2 + breast cancer models with other PI3K inhibitors. Methods Models with different genetic backgrounds were used to investigate the pharmacological profile of MEN1611 against other PI3K inhibitors. In vitro studies evaluated cell viability, PI3K signaling, and cell death upon treatment with MEN1611. In vivo efficacy of the compound was investigated in cell line- and patient-derived xenografts models. Results Consistent with its biochemical selectivity, MEN1611 demonstrated lower cytotoxic activity in a p110δ-driven cellular model when compared to taselisib, and higher cytotoxic activity in the p110β-driven cellular model when compared to alpelisib. Moreover, MEN1611 selectively decreased the p110α protein levels in PIK3CA mutated breast cancer cells in a concentration- and proteasome-dependent manner. In vivo, MEN1611 monotherapy showed significant and durable antitumor activity in several trastuzumab-resistant PIK3CA-mutant HER2 + PDX models. The combination of trastuzumab and MEN1611 significantly improved the efficacy compared to single agent treatment. Conclusions The profile of MEN1611 and its antitumoral activity suggest an improved profile as compared to pan-inhibitors, which are limited by a less than ideal safety profile, and isoform selective molecules, which may potentially promote development of resistance mechanisms. The compelling antitumor activity in combination with trastuzumab in HER2 + trastuzumab-resistant, PIK3CA mutated breast cancer models is at the basis of the ongoing B-Precise clinical trial (NCT03767335).This work was supported by Regione Lazio, POR FESR 2014–2020 Bando “Life 2020_Progetti. integrati” for the project “PISTA (PI3K for Solid Tumor therApy)” (CUP F57H18000070007)

    Protocol to generate a patient derived xenograft model of acquired resistance to immunotherapy in humanized mice

    Get PDF
    Cancer; Cell isolation; Stem cellsCàncer; Aïllament cel·lular; Cèl·lules mareCáncer; Aislamiento celular; Células madreImmunotherapy has revolutionized cancer treatment, but preclinical models are required to understand immunotherapy resistance mechanisms underlying patient relapse. This protocol describes how to generate an acquired resistance humanized in vivo model to immunotherapies in patient-derived xenografts (PDX). We detail steps to inject human CD34+ cells into NSG mice, followed by generation of immunoresistant PDX in humanized mice. This approach recapitulates the human immune system, allowing investigators to generate preclinical resistance models to different immunotherapies for identifying the resistant phenotype. For complete details on the use and execution of this protocol, please refer to Martínez-Sabadell et al., 2022 and Arenas et al. (2021).This work was supported by Asociación Española Contra el Cancer (GCAEC19017ARRI), Breast Cancer Research Foundation (BCRF-21-008), and Instituto de Salud Carlos III (PI19/01181). A.M.S. was funded by the Spanish Government (PFIS FI20/00188). P.O.R. was funded by the BBVA. E.J.A. was funded by the AECC (POSTD211413AREN). VHIO would like to acknowledge the Cellex Foundation for providing research facilities and equipment and the Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) from the Institute of Health Carlos III (ISCIII) for their support on this research. Authors acknowledge financial support for the Cancer Immunology and Immunotherapy (CAIMI-2) program funded by BBVA Foundation. The Graphical abstract was created with BioRender.com

    On the difficulty of hiding the balance of lightning network channels

    Get PDF
    International audienceThe Lightning Network is a second layer technology running on top of Bitcoin and other Blockchains. It is composed of a peer-to-peer network, used to transfer raw information data. Some of the links in the peer-to-peer network are identified as payment channels, used to conduct payments between two Lightning Network clients (i.e., the two nodes of the channel). Payment channels are created with a fixed credit amount, the channel capacity. The channel capacity, together with the IP address of the nodes, is published to allow a routing algorithm to find an existing path between two nodes that do not have a direct payment channel. However, to preserve users' privacy, the precise balance of the pair of nodes of a given channel (i.e. the bandwidth of the channel in each direction), is kept secret. Since balances are not announced, second-layer nodes probe routes iteratively, until they find a successful route to the destination for the amount required, if any. This feature makes the routing discovery protocol less efficient but preserves the privacy of channel balances. In this paper, we present an attack to disclose the balance of a channel in the Lightning Network. Our attack is based on performing multiple payments ensuring that none of them is finalized, minimizing the economical cost of the attack. We present experimental results that validate our claims, and countermeasures to handle the attack

    On the difficulty of hiding the balance of lightning network channels

    Get PDF
    The Lightning Network is a second layer technology running on top of Bitcoin and other Blockchains. It is composed of a peer-to-peer network, used to transfer raw information data. Some of the links in the peer-to-peer network are identified as payment channels, used to conduct payments between two Lightning Network clients (i.e., the two nodes of the channel). Payment channels are created with a fixed credit amount, the channel capacity. The channel capacity, together with the IP address of the nodes, is published to allow a routing algorithm to find an existing path between two nodes that do not have a direct payment channel. However, to preserve users' privacy, the precise balance of the pair of nodes of a given channel (i.e. the bandwidth of the channel in each direction), is kept secret. Since balances are not announced, second-layer nodes probe routes iteratively, until they find a successful route to the destination for the amount required, if any. This feature makes the routing discovery protocol less efficient but preserves the privacy of channel balances. In this paper, we present an attack to disclose the balance of a channel in the Lightning Network. Our attack is based on performing multiple payments ensuring that none of them is finalized, minimizing the economical cost of the attack. We present experimental results that validate our claims, and countermeasures to handle the attac

    HER2 and p95HER2 differentially regulate miRNA expression in MCF-7 breast cancer cells and downregulate MYB proteins through miR-221/222 and miR-503

    Get PDF
    Mecanismes de la malaltia; Càncer de mamaMecanismos de la enfermedad; Cáncer de mamaDisease Mechanisms; Breast CancerThe HER2 oncogene and its truncated form p95HER2 play central roles in breast cancer. Here, we show that although HER2 and p95HER2 generally elicit qualitatively similar changes in miRNA profile in MCF-7 breast cancer cells, a subset of changes are distinct and p95HER2 shifts the miRNA profile towards the basal breast cancer subtype. High-throughput miRNA profiling was carried out 15, 36 and 60 h after HER2 or p95HER2 expression and central hits validated by RT-qPCR. miRNAs strongly regulated by p95HER2 yet not by HER2, included miR-221, miR-222, miR-503, miR-29a, miR-149, miR-196 and miR-361. Estrogen receptor-α (ESR1) expression was essentially ablated by p95HER2 expression, in a manner recapitulated by miR-221/-222 mimics. c-Myb family transcription factors MYB and MYBL1, but not MYBL2, were downregulated by p95HER2 and by miR-503 or miR-221/-222 mimics. MYBL1 3′UTR inhibition by miR-221/222 was lost by deletion of a single putative miR-221/222 binding sites. p95HER2 expression, or knockdown of either MYB protein, elicited upregulation of tissue inhibitor of matrix metalloprotease-2 (TIMP2). miR-221/222 and -503 mimics increased, and TIMP2 knockdown decreased, cell migration and invasion. A similar pathway was operational in T47D- and SKBr-3 cells. This work reveals important differences between HER2- and p95HER2- mediated miRNA changes in breast cancer cells, provides novel mechanistic insight into regulation of MYB family transcription factors by p95HER2, and points to a role for a miR-221/222– MYB family–TIMP2 axis in regulation of motility in breast cancer cells.This work was supported by the Danish Council for Independent Research (grants no. 12-126942 and 12-127290 to SFP), by the Hartmann foundation (SFP), Fondation Juchum (SFP), Kirsten og Freddy Johansens Fond (SFP), the Breast Cancer Research Foundation (BCRF-17-008) (JA), Instituto de Salud Carlos III (PI16/00253) (JA) and the Harboe foundation (SFP). Katrine Franklin Mark is gratefully acknowledged for excellent technical assistance. We are grateful to Pascal Pineau from Institut Pasteur, France for the MYBL1 3′UTR/psiCHECK2 construct

    Targeting HER2-AXL heterodimerization to overcome resistance to HER2 blockade in breast cancer

    Get PDF
    Breast cancer; HeterodimerizationCáncer de mama; HeterodimerizaciónCàncer de mama; HeterodimeritzacióAnti-HER2 therapies have markedly improved prognosis of HER2-positive breast cancer. However, different mechanisms play a role in treatment resistance. Here, we identified AXL overexpression as an essential mechanism of trastuzumab resistance. AXL orchestrates epithelial-to-mesenchymal transition and heterodimerizes with HER2, leading to activation of PI3K/AKT and MAPK pathways in a ligand-independent manner. Genetic depletion and pharmacological inhibition of AXL restored trastuzumab response in vitro and in vivo. AXL inhibitor plus trastuzumab achieved complete regression in trastuzumab-resistant patient-derived xenograft models. Moreover, AXL expression in HER2-positive primary tumors was able to predict prognosis. Data from the PAMELA trial showed a change in AXL expression during neoadjuvant dual HER2 blockade, supporting its role in resistance. Therefore, our study highlights the importance of targeting AXL in combination with anti-HER2 drugs across HER2-amplified breast cancer patients with high AXL expression. Furthermore, it unveils the potential value of AXL as a druggable prognostic biomarker in HER2-positive breast cancer.A.A.-A., E.J.A., and F.B.-M. were supported by Asociación Española contra el Cáncer AECC (PRDVA18013LLUC to A.A.-A., POSTD211413AREN to E.J.A., and AECC_Postdoctoral17-1062 to F.B.-M.). A.M.-S. was funded by the Spanish Government (PFIS FI20/00188). J.Ar. is supported by Breast Cancer Research Foundation (BCRF-20-08), Instituto de Salud Carlos III Project reference number AC15/00062, and the EC under the framework of the ERA-NET TRANSCAN-2 initiative cofinanced by FEDER, Instituto de Salud Carlos III (CB16/12/00449 and PI19/01181), and Asociación Española Contra el Cáncer (AECC). A.P. was supported by Instituto de Salud Carlos III—PI19/01846, Breast Cancer Now—2018NOVPCC1294. P.E. and A.L. were funded by Instituto de Salud Carlos III and cofinanced by FEDER (PI18/01219 to P.E. and CB16/12/00481 to A.L.). J.M.C. was funded by Sociedad Española de Oncología Médica (Rio Hortega-SEOM) and Compromiso ADAMED

    Gasdermin B over-expression modulates HER2-targeted therapy resistance by inducing protective autophagy through Rab7 activation

    Get PDF
    Gasdermin B; HER2 breast cancer; Protective autophagyGasdermin B; Càncer de mama HER2; Autofàgia protectoraGasdermin B; Cáncer de mama HER2; Autofagia protectoraBackground Gasdermin B (GSDMB) over-expression promotes poor prognosis and aggressive behavior in HER2 breast cancer by increasing resistance to therapy. Decoding the molecular mechanism of GSDMB-mediated drug resistance is crucial to identify novel effective targeted treatments for HER2/GSDMB aggressive tumors. Methods Different in vitro approaches (immunoblot, qRT-PCR, flow cytometry, proteomic analysis, immunoprecipitation, and confocal/electron microscopy) were performed in HER2 breast and gastroesophageal carcinoma cell models. Results were then validated using in vivo preclinical animal models and analyzing human breast and gastric cancer samples. Results GSDMB up-regulation renders HER2 cancer cells more resistant to anti-HER2 agents by promoting protective autophagy. Accordingly, the combination of lapatinib with the autophagy inhibitor chloroquine increases the therapeutic response of GSDMB-positive cancers in vitro and in zebrafish and mice tumor xenograft in vivo models. Mechanistically, GSDMB N-terminal domain interacts with the key components of the autophagy machinery LC3B and Rab7, facilitating the Rab7 activation during pro-survival autophagy in response to anti-HER2 therapies. Finally, we validated these results in clinical samples where GSDMB/Rab7/LC3B co-expression associates significantly with relapse in HER2 breast and gastric cancers. Conclusion Our findings uncover for the first time a functional link between GSDMB over-expression and protective autophagy in response to HER2-targeted therapies. GSDMB behaves like an autophagy adaptor and plays a pivotal role in modulating autophagosome maturation through Rab7 activation. Finally, our results provide a new and accessible therapeutic approach for HER2/GSDMB + cancers with adverse clinical outcome.This study has been supported by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (PID2019-104644RB-I00) -GMB-, the Instituto de Salud Carlos III (CIBERONC, CB16/12/00449 -JA-, CB16/12/00231 -DLN- and CB16/12/00295 -GMB-, PI19/01181 -JA-, PI18/00795, CP17/00063 and RTI2018-095611-A-I00 -DLN- and ERA-NET TRANSCAN-2 -JA- [all partly supported by FEDER funds]) and by the AECC Scientific Foundation (FC_AECC PROYE19036MOR -GMB- and LABAE19004LLOB -DLN-). Furthermore, this work was supported by Breast Cancer Research Foundation (BCRF-19–08) -JA-. We are also grateful to the CERCA Programme (Generalitat de Catalunya) for institutional support. MGC and DS contracts are funded by CIBERONC, KG is a recipient of a PFIS fellowship (FI19/00188), RRB is recipient of a Ramón y Cajal grant (RyC-2016–19671) and DLN is recipient of a Miguel Servet grant (MS17/00063) (all partly supported by FEDER funds). We are also grateful to MD Anderson BIOBANK for providing tumor samples. The bank (reference # B.0000745) belongs to the National Registry of Biobanks coordinated by the Carlos III Health Institute
    corecore