675 research outputs found

    Evaluating true BCI communication rate through mutual information and language models.

    Get PDF
    Brain-computer interface (BCI) systems are a promising means for restoring communication to patients suffering from "locked-in" syndrome. Research to improve system performance primarily focuses on means to overcome the low signal to noise ratio of electroencephalogric (EEG) recordings. However, the literature and methods are difficult to compare due to the array of evaluation metrics and assumptions underlying them, including that: 1) all characters are equally probable, 2) character selection is memoryless, and 3) errors occur completely at random. The standardization of evaluation metrics that more accurately reflect the amount of information contained in BCI language output is critical to make progress. We present a mutual information-based metric that incorporates prior information and a model of systematic errors. The parameters of a system used in one study were re-optimized, showing that the metric used in optimization significantly affects the parameter values chosen and the resulting system performance. The results of 11 BCI communication studies were then evaluated using different metrics, including those previously used in BCI literature and the newly advocated metric. Six studies' results varied based on the metric used for evaluation and the proposed metric produced results that differed from those originally published in two of the studies. Standardizing metrics to accurately reflect the rate of information transmission is critical to properly evaluate and compare BCI communication systems and advance the field in an unbiased manner

    The Baptist Church in Warren: Rehabilitation and Preservation Report

    Get PDF
    The Baptist Church in Warren is located in the Warren Waterfront Historic National Register District. Warren also has a Voluntary Historic District. Both the National Register Nomination and the Voluntary Historic District have regulations which pertain to changes to the exterior view shed of the building. Exterior work on this project will need to abide by the State of Rhode Island and the Providence Plantations Rehabilitation Code for existing buildings and structures and the Town of Warren Department of Building and Zoning. Exterior work done on a voluntary basis, according to the Warren Voluntary Historic District guidelines, will qualify for a 20% tax credit. The Baptist Church in Warren does not meet the requirements for the local and state tax credit

    Brief report: RRx-001 is a c-Myc inhibitor that targets cancer stem cells.

    Get PDF
    The goal of anticancer therapy is to selectively eradicate all malignant cells. Unfortunately for the majority of patients with metastatic disease, this goal is consistently thwarted by the nearly inevitable development of therapeutic resistance; the main driver of therapeutic resistance is a minority subpopulation of cancer cells called cancer stem cells (CSCs) whose mitotic quiescence essentially renders them non-eradicable. The Wnt signaling pathway has been widely implicated as a regulator of CSCs and, therefore, its inhibition is thought to result in a reversal of therapeutic resistance via loss of stem cell properties. RRx-001 is a minimally toxic redox-active epi-immunotherapeutic anticancer agent in Phase III clinical trials that sensitizes tumors to radiation and cytotoxic chemotherapies. In this article, as a potential mechanism for its radio- and chemosensitizing activity, we report that RRx-001 targets CD133 + /CD44 + cancer stem cells from three colon cancer cell-lines, HT-29, Caco-2, and HCT116, and inhibits Wnt pathway signalling with downregulation of c-Myc

    Bidirectional Representation Learning from Transformers using Multimodal Electronic Health Record Data to Predict Depression

    Full text link
    Advancements in machine learning algorithms have had a beneficial impact on representation learning, classification, and prediction models built using electronic health record (EHR) data. Effort has been put both on increasing models' overall performance as well as improving their interpretability, particularly regarding the decision-making process. In this study, we present a temporal deep learning model to perform bidirectional representation learning on EHR sequences with a transformer architecture to predict future diagnosis of depression. This model is able to aggregate five heterogenous and high-dimensional data sources from the EHR and process them in a temporal manner for chronic disease prediction at various prediction windows. We applied the current trend of pretraining and fine-tuning on EHR data to outperform the current state-of-the-art in chronic disease prediction, and to demonstrate the underlying relation between EHR codes in the sequence. The model generated the highest increases of precision-recall area under the curve (PRAUC) from 0.70 to 0.76 in depression prediction compared to the best baseline model. Furthermore, the self-attention weights in each sequence quantitatively demonstrated the inner relationship between various codes, which improved the model's interpretability. These results demonstrate the model's ability to utilize heterogeneous EHR data to predict depression while achieving high accuracy and interpretability, which may facilitate constructing clinical decision support systems in the future for chronic disease screening and early detection.Comment: in IEEE Journal of Biomedical and Health Informatics (2021

    Transformer Lesion Tracker

    Full text link
    Evaluating lesion progression and treatment response via longitudinal lesion tracking plays a critical role in clinical practice. Automated approaches for this task are motivated by prohibitive labor costs and time consumption when lesion matching is done manually. Previous methods typically lack the integration of local and global information. In this work, we propose a transformer-based approach, termed Transformer Lesion Tracker (TLT). Specifically, we design a Cross Attention-based Transformer (CAT) to capture and combine both global and local information to enhance feature extraction. We also develop a Registration-based Anatomical Attention Module (RAAM) to introduce anatomical information to CAT so that it can focus on useful feature knowledge. A Sparse Selection Strategy (SSS) is presented for selecting features and reducing memory footprint in Transformer training. In addition, we use a global regression to further improve model performance. We conduct experiments on a public dataset to show the superiority of our method and find that our model performance has improved the average Euclidean center error by at least 14.3% (6mm vs. 7mm) compared with the state-of-the-art (SOTA). Code is available at https://github.com/TangWen920812/TLT.Comment: Accepted MICCAI 202

    Ultrasound Image Enhancement using CycleGAN and Perceptual Loss

    Full text link
    Purpose: The objective of this work is to introduce an advanced framework designed to enhance ultrasound images, especially those captured by portable hand-held devices, which often produce lower quality images due to hardware constraints. Additionally, this framework is uniquely capable of effectively handling non-registered input ultrasound image pairs, addressing a common challenge in medical imaging. Materials and Methods: In this retrospective study, we utilized an enhanced generative adversarial network (CycleGAN) model for ultrasound image enhancement across five organ systems. Perceptual loss, derived from deep features of pretrained neural networks, is applied to ensure the human-perceptual quality of the enhanced images. These images are compared with paired images acquired from high resolution devices to demonstrate the model's ability to generate realistic high-quality images across organ systems. Results: Preliminary validation of the framework reveals promising performance metrics. The model generates images that result in a Structural Similarity Index (SSI) score of 0.722, Locally Normalized Cross-Correlation (LNCC) score of 0.902 and 28.802 for the Peak Signal-to-Noise Ratio (PSNR) metric. Conclusion: This work presents a significant advancement in medical imaging through the development of a CycleGAN model enhanced with Perceptual Loss (PL), effectively bridging the quality gap between ultrasound images from varied devices. By training on paired images, the model not only improves image quality but also ensures the preservation of vital anatomic structural content. This approach may improve equity in access to healthcare by enhancing portable device capabilities, although further validation and optimizations are necessary for broader clinical application.Comment: 7 pages, 3 figure
    corecore