24 research outputs found

    Lipid analogs reveal features critical for hemolysis and diminish granadaene mediated Group B Streptococcus infection

    Get PDF
    Although certain microbial lipids are toxins, the structural features important for cytotoxicity remain unknown. Increased functional understanding is essential for developing therapeutics against toxic microbial lipids. Group B Streptococci (GBS) are bacteria associated with preterm births, stillbirths, and severe infections in neonates and adults. GBS produce a pigmented, cytotoxic lipid, known as granadaene. Despite its importance to all manifestations of GBS disease, studies towards understanding granadaene’s toxic activity are hindered by its instability and insolubility in purified form. Here, we report the synthesis and screening of lipid derivatives inspired by granadaene, which reveal features central to toxin function, namely the polyene chain length. Furthermore, we show that vaccination with a non-toxic synthetic analog confers the production of antibodies that inhibit granadaene-mediated hemolysis ex vivo and diminish GBS infection in vivo. This work provides unique structural and functional insight into granadaene and a strategy to mitigate GBS infection, which will be relevant to other toxic lipids encoded by human pathogens.This work was supported by funding from the National Institutes of Health Grants R01AI112619, R01AI133976, R01AI100989, and R21AI125907 and seed funds from Seattle Childrens Research Institute to L.

    Autocrine PDGF stimulation in malignancies

    Get PDF
    Platelet-derived growth factor (PDGF) isoforms are important mitogens for different types of mesenchymal cells, which have important functions during the embryonal development and in the adult during wound healing and tissue homeostasis. In tumors, PDGF isoforms are often over-expressed and contribute to the growth of both normal and malignant cells. This review focuses on tumors expressing PDGF isoforms together with their tyrosine kinase receptors, thus resulting in autocrine stimulation of growth and survival. Patients with such tumors could benefit from treatment with inhibitors of either PDGF or PDGF receptors

    Single cell deformation in shear and inertia dominant flow regimes

    No full text
    We report new insight into cell deformability in inertia-dominant and shear-dominant flows. As a first model, we show that the deformability of HL60 cells changes with flow regime, which shows that flow regime can be used to probe different aspects of a cell’s internal structure. Additionally, we show the importance of flow regime when using deformability to distinguish between primary (SW480) and secondary (SW620) colorectal cancer cell lines

    Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles

    No full text
    Microbubbles (MBs) have a multitude of applications including as contrast agents in ultrasound imaging and as therapeutic drug delivery vehicles, with further scope for combining their diagnostic and therapeutic properties (known as theranostics). MBs used clinically are commonly made by mechanical agitation or sonication methods, which offer little control over population size and dispersity. Furthermore, clinically used MBs are yet to be used therapeutically and further research is needed to develop these theranostic agents. In this paper, we present our MB production instrument “Horizon,” which is a robust, portable, and user-friendly instrument, integrating the key components for producing MBs using microfluidic flow-focusing devices. In addition, we present the system design and specifications of Horizon and the optimized protocols that have so far been used to produce MBs with specific properties. These include MBs with tailored size and low dispersity (monodisperse); MBs with a diameter of ∼2 μm, which are more disperse but also produced in higher concentration; nanobubbles with diameters of 100–600 nm; and therapeutic MBs with drug payloads for targeted delivery. Multiplexed chips were able to improve production rates up to 16-fold while maintaining production stability. This work shows that Horizon is a versatile instrument with potential for mass production and use across many research facilities, which could begin to bridge the gap between therapeutic MB research and clinical use

    Nanobubbles for therapeutic delivery: Production, stability and current prospects

    No full text
    Nanobubbles (NBs) have recently garnered widespread attention for their potential use as dual diagnostic and therapeutic agents. Similar to their micron-sized relatives (microbubbles), NBs are shell-stabilized, gas-cored bubbles that in conjunction with ultrasound can be used to increase imaging contrast, as well as provide a mechanism for trigger drug release and increased therapeutic delivery. In this review, we specifically focus on their development as agents to enhance drug delivery, discussing theory, characterization techniques, key formulations and prospects for translation into clinical use

    The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery

    No full text
    [Image: see text] Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1–10 μm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been shown that the reduced size of NBs (<1 μm) promotes increased uptake and accumulation in tumor interstitial space, which can enhance their diagnostic and therapeutic performance. However, accurate characterization of NB size and concentration is challenging and may limit their translation into clinical use. Their submicron nature limits accuracy of conventional microscopy techniques, while common light scattering techniques fail to distinguish between subpopulations present in NB samples (i.e., bubbles and liposomes). Due to the difficulty in the characterization of NBs, relatively little is known about the influence of size on their therapeutic performance. In this study, we describe a novel method of using a commercially available nanoparticle tracking analysis system, to distinguish between NBs and liposomes based on their differing optical properties. We used this technique to characterize three NB populations of varying size, isolated via centrifugation, and subsequently used this to assess their potential for enhancing localized delivery. Confocal fluorescence microscopy and image analysis were used to quantify the ultrasound enhanced uptake of fluorescent dextran into live colorectal cancer cells. Our results showed that the amount of localized uptake did not follow the expected trends, in which larger NB populations out-perform smaller NBs, at matched concentration. To understand this observed behavior, the stability of each NB population was assessed. It was found that dilution of the NB samples from their stock concentration influences their stability, and it is hypothesized that both the total free lipid and interbubble distance play a role in NB lifetime, in agreement with previously proposed theories and models

    Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy

    Get PDF
    Label-free live single-cell Raman spectroscopy was used to obtain a chemical fingerprint of colorectal cancer cells including the classification of the SW480 and SW620 cell line model system, derived from primary and secondary tumour cells from the same patient. High-quality Raman spectra were acquired from hundreds of live cells, showing high reproducibility between experiments. Principal component analysis with linear discriminant analysis yielded the best cell classification, with an accuracy of 98.7±0.3% (standard error) when compared to discrimination trees or support vector machines. SW480 showed higher content of the disordered secondary protein structure amide III band, whereas SW620 showed larger α-helix and β-sheet band content. The SW620 cell line also displayed higher nucleic acid, phosphates, saccharide, and CH₂ content. HL60, HT29, HCT116, SW620 and SW480 live single-cell spectra were classified using PCA/LDA with an accuracy of 92.4±0.4% (standard error), showing differences mainly in the β-sheet content, the cytochrome C bands, the CH-stretching regions, the lactate contributions and the DNA content. The lipids contributions above 2900 cm¯¹ and the lactate contributions at 1785 cm¯¹ appeared to be dependent on the colorectal adenocarcinoma stage, the advanced stage cell lines showing lower lipid and higher lactate content. The results demonstrate that these cell lines can be distinguished with high confidence, suggesting that Raman spectroscopy on live cells can distinguish between different disease stages, and could play an important role clinically as a diagnostic tool for cell phenotyping
    corecore