4 research outputs found

    第933回千葉医学会例会・第1内科教室同門会例会

    Get PDF
    Prominent theories emphasize key roles for the insular cortex in the central representation of interoceptive sensations, but how this brain region responds dynamically to changes in interoceptive state remains incompletely understood. Here, we systematically modulated cardiorespiratory sensations in humans using bolus infusions of isoproterenol, a rapidly acting peripheral beta-adrenergic agonist similar to adrenaline. To identify central neural processes underlying these parametrically modulated interoceptive states, we used pharmacological functional magnetic resonance imaging (phMRI) to simultaneously measure blood-oxygenation-level dependent (BOLD) and arterial spin labelling (ASL) signals in healthy participants. Isoproterenol infusions induced dose-dependent increases in heart rate and cardiorespiratory interoception, with all participants endorsing increased sensations at the highest dose. These reports were accompanied by increased BOLD and ASL activation of the right insular cortex at the highest dose. Different responses across insula subregions were also observed. During anticipation, insula activation increased in more anterior regions. During stimulation, activation increased in the mid-dorsal and posterior insula on the right, but decreased in the same regions on the left. This study demonstrates the feasibility of phMRI for assessing brain activation during adrenergic interoceptive stimulation, and provides further evidence supporting a dynamic role for the insula in representing changes in cardiorespiratory states.This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’

    Computing with dendrodendritic synapses in the olfactory bulb.

    No full text
    Decades of work in vivo and in vitro have provided a wealth of data on the properties of the reciprocal dendrodendritic synapses that connect olfactory bulb mitral and granule cells. However, hypotheses about the function of these connections have changed relatively little. These synapses are believed to mediate recurrent and lateral inhibition and thus, by analogy with lateral inhibition in other systems, have been proposed to play a role in sharpening mitral cell receptive fields and in generating oscillatory spiking in mitral cells. This description is likely to be partially accurate, but is likely to be a rather simplified and incomplete account of the function of these connections. In particular, current hypotheses about the function of dendrodendritic circuits do not account for some of the unusual features of reciprocal synapses that may allow olfactory bulb circuits to perform special functions. Here we review recent work on the physiology and function of olfactory bulb circuits and try to link the physiological properties of reciprocal synapses particular computations that the olfactory bulb may perform.</p

    Activity-dependent gating of lateral inhibition in the mouse olfactory bulb.

    No full text
    Lateral inhibition is a circuit motif found throughout the nervous system that often generates contrast enhancement and center-surround receptive fields. We investigated the functional properties of the circuits mediating lateral inhibition between olfactory bulb principal neurons (mitral cells) in vitro. We found that the lateral inhibition received by mitral cells is gated by postsynaptic firing, such that a minimum threshold of postsynaptic activity is required before effective lateral inhibition is recruited. This dynamic regulation allows the strength of lateral inhibition to be enhanced between cells with correlated activity. Simulations show that this regulation of lateral inhibition causes decorrelation of mitral cell activity that is evoked by similar stimuli, even when stimuli have no clear spatial structure. These results show that this previously unknown mechanism for specifying lateral inhibitory connections allows functional inhibitory connectivity to be dynamically remapped to relevant populations of neurons.</p

    Behavioral data from How the heart speaks to the brain: neural activity during cardiorespiratory interoceptive stimulation

    No full text
    Prominent theories emphasize key roles for the insular cortex in the central representation of interoceptive sensations, but how this brain region responds dynamically to changes in interoceptive state remains incompletely understood. Here, we systematically modulated cardiorespiratory sensations in humans using bolus infusions of isoproterenol, a rapidly acting peripheral beta-adrenergic agonist similar to adrenaline. To identify central neural processes underlying these parametrically modulated interoceptive states, we used pharmacological functional magnetic resonance imaging (phMRI) to simultaneously measure blood-oxygenation-level dependent (BOLD) and arterial spin labelling (ASL) signals in healthy participants. Isoproterenol infusions induced dose-dependent increases in heart rate and cardiorespiratory interoception, with all participants endorsing increased sensations at the highest dose. These reports were accompanied by increased BOLD and ASL activation of the right insular cortex at the highest dose. Different responses across insula subregions were also observed. During anticipation, insula activation increased in more anterior regions. During stimulation, activation increased in the mid-dorsal and posterior insula on the right, but decreased in the same regions on the left. This study demonstrates the feasibility of phMRI for assessing brain activation during adrenergic interoceptive stimulation, and provides further evidence supporting a dynamic role for the insula in representing changes in cardiorespiratory states.This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’
    corecore