8 research outputs found

    Numerical and Experimental Study on Inertial Impactors

    Get PDF
    One of the most important physical properties that defines the behavior of an aerosol particle is its size. Size defines to a great extent how particles behave in physical and chemical processes. Applying experimental and numerical methods, this thesis studies the fundamentals of the operation of impactors, the instruments that are used to measure the size of aerosol particles.The first part of the thesis develops a CFD simulation approach, which is suitable for low pressure impactors and their verification. The CFD model is then used to the study parameters that affect the shape of a low pressure impactor’s collection efficiency curve. The second part focuses on the applications of these findings by introducing two new impactors: a variable nozzle area impactor (VNAI), designed for detailed study of particle behavior in collisions, and a high-resolution low-pressure cascade impactor (HRLPI), used in combination with electrical detection to measure nanoparticle size distribution.Simulations showed that the steepness of the collection efficiency curve depends on the uniformity of the impaction conditions in the impactor jet. Conditions were defined in terms of static pressure, velocity, and particle stopping distance proïŹles in the cross section of the jet. Uniform impaction conditions and a steep cut-curve were achieved at a short throat, low pressure impactor stage.In the devised VNAI impactor, particles showed very uniform impaction velocities, a fact that was used to examine the critical velocity of the rebound of spherical silver particles. The critical velocities were several orders of magnitude lower than those for micron sized particles. This may be explained by a different material pair used in the experiments and previous studies. The HRLPI was designed based on instrument response simulations to gain maximum information on aerodynamic size distribution and to guarantee robust inversion characteristics in real-time measurement. This was achieved with roughly ten stages per size decade and with slit type, short-throat nozzles.This thesis sheds light on some still unanswered questions in impactor theory and successfully applies the theory to practise by introducing new high resolution impactors for nanoparticle research.<br/

    Measurement of the human respiratory tract deposited surface area of particles with an electrical low pressure impactor

    Get PDF
    Particle deposition in the human respiratory tract is considered to have negative effects on human health. The lung deposited surface area (LDSA) is an important metric developed to assess the negative health effects of particles deposited in the alveolar region of the human respiratory tract. The measurement of the LDSA is frequently based on the detection of the electrical current carried by diffusion charged particles. Various conversion factors can be used to convert the electric current into LDSA concentration with relatively good accuracy up to the size about 300-600 nm. In this study, we introduce stage-specific LDSA conversion factors for electrical low pressure impactor (ELPI+) data, which enable accurate and real time LDSA concentration and LDSA size distribution measurements in the particle size range from 6 nm to 10 ”m. This wide size range covers most of the alveolar deposition of particles, which has not been possible previously by electrical methods. Also, the conversion factors for tracheobronchial and head airways particle surface area deposition were determined, and the stage-specific conversion factors were compared with the single-factor data conversion method. Furthermore, the stage-specific calibration was tested against real-world particle size distributions by simulations and against laboratory-generated aerosols. Particles larger than 300 nm were observed to significantly affect the total LDSA concentration. Stage-specific conversion factors are especially required while measuring aerosols containing larger particles or when considering the surface area deposition in the tracheobronchial region and head airways. The method and the conversion factors introduced in this study can be used to monitor LDSA concentrations reliably in various environments containing particles in different size ranges.acceptedVersionPeer reviewe

    Fuel‐operated auxiliary heaters are a major additional source of vehicular particulate emissions in cold regions

    Get PDF
    Fuel‐operated auxiliary heaters (AHs) can be notable sources of particle emissions from vehicles. The emissions of AHs are unregulated, and the number of devices is high; therefore, they make considerable contributions to local air quality, and even the global emissions budget. Experiments for studying the emissions were performed in Finland for a total of eight selected vehicles with Original Equipment Manufacturer (OEM) AHs installed, including both diesel‐ and gasoline‐operated heaters. We present the numerical results of particle emissions and compare the particle concentrations in the AH exhaust to values found in the tailpipe exhaust of the same vehicle. Our results show that the emissions from auxiliary heaters are typically several orders of magnitude higher than of a car exhaust when idling. This raises the question of whether the use of heaters is justified based on the goal to reduce total emissions from vehicle use; furthermore, whether fuel-operated heaters should also be applied in electric vehicles for cabin heating. More research will be needed to characterize the emissions more thoroughly to understand the air quality and climate effects from AHs, and to provide further recommendations on the use of these heaters.publishedVersionPeer reviewe

    Concentrations and Size Distributions of Particle Lung-deposited Surface Area (LDSA) in an Underground Mine

    Get PDF
    Ultrafine particles produced by diesel-powered vehicles in underground mines are largely unaccounted for in mass-based air quality metrics. The Lung Deposited Surface Area concentration (LDSA) is an alternative to describe the harmfulness of particles. We aim to study concentrations and size distributions of LDSA at various locations in an underground mine as well as to evaluate the applicability of sensor-type measurement of LDSA. This study was conducted in an underground mine in Kemi, Finland, in 2017. Our main instrument was an electrical low-pressure impactor (ELPI+) inside a mobile laboratory. Additionally, five diffusion-charging based sensors were tested. The environment was challenging for the sensors as the particle size distribution was often outside the optimum range (20–300 nm) and dust accumulated inside the instruments. Despite this, the correlations with the ELPI+ were decent (R2 from 0.53 to 0.59). With the ELPI+ we determined that the maintenance area had the lowest mean LDSA concentration (79 ± 38 ”m2 cm–3) of the measured locations. At the other locations, concentrations ranged from 137 to 405 ”m2 cm–3. The mode particle size for the LDSA distribution was around 100 nm at most locations, with the blasting site as a notable exception (mode size closer to 700 nm). Diffusion-charging based sensors—perhaps aided by optical sensors—are potential solutions for long-term monitoring of LDSA if dust accumulation is taken care of. Our research indicates worker exposure could be reduced with the implementation of a sensor network to show which locations need either protective gear or increased ventilation.publishedVersionPeer reviewe

    Experimental and numerical analysis of fine particle and soot formation in a modern 100 MW pulverized biomass heating plant

    Get PDF
    The formation of soot, organic, and inorganic aerosols has a profound effect on the environmental and technological feasibility of biomass combustion. In this work, the soot and aerosol processes are examined for a modern pulverized wood-burning 100 MWth district heating plant. Experimental data was collected from two locations inside the furnace (30% and 100% thermal loads), including measurements for fine particle (PM1) number size distribution, number concentration, and chemical composition. The experiments were complemented with Computational Fluid Dynamics (CFD) simulations and Plug-Flow Reactor (PFR) modeling. The measurements and modeling are combined in a comprehensive analysis, providing fundamental understanding on the aerosol processes inside the furnace. The wood-powder combustion is efficient under both thermal loads, indicated by the low unburned carbon content in fly-ash, and the low CO, NO and soot emissions (<0.3 mg/Nm3). The fine particles consist mainly of K2SO4, and of lesser amounts of alkali salts (NaCl, KCl), and Ca and Mg compounds (oxides or sulfates). A large concentration of KOH/K2CO3 vapor may exist in the flue gas and play a significant role in the heat exchanger fouling. The applied modeling tools are shown to provide accurate estimations for the composition and formation regions of fine particles inside the industrial biomass furnaces.publishedVersionPeer reviewe

    Atmospheric synthesis of superhydrophobic TiO2 nanoparticle deposits in a single step using Liquid Flame Spray

    No full text
    Titanium dioxide nanoparticles are synthesised in aerosol phase using the Liquid Flame Spray method. The particles are deposited in-situ on paperboard, glass and metal surfaces. According to literature, titanium dioxide is supposed to be hydrophilic. However, hydrophobic behaviour is observed on paperboard substrates but not on metal or glass substrates. Here, the water contact angle behaviour of the deposits is studied along with XRD, XPS, BET and HR-TEM. The deposits are compared with silicon dioxide deposits having, as expected, hydrophilic properties synthesised with the same method. It seems probable that the deposition process combusts some substrate material from the paperboard substrate, which later on condenses on top of the deposit to form a carbonaceous layer causing the hydrophobic behaviour of the TiO2 deposit. The similar layer does not form when depositing the nanoparticles on a metal or glass surfaces. The observations are more than purely aerosol phenomena. However, they are quite essential in nanoparticle deposition from the aerosol phase onto a substrate which is commonly utilised. (C) 2012 Elsevier Ltd. All rights reserved
    corecore