27 research outputs found

    A First Look at the Abundance Pattern -- O/H, C/O, Ne/O, and Fe/O -- in z>7z>7 Galaxies with JWST/NIRSpec

    Full text link
    We analyze the rest-frame near-UV and optical nebular spectra of three z > 7 galaxies from the Early Release Observations taken with the Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST). These three high-z galaxies show the detection of several strong-emission nebular lines, including the temperature-sensitive [O III] λ\lambda4363 line, allowing us to directly determine the nebular conditions and gas-phase abundances for O/H, C/O, Ne/O, and Fe/O. We derive O/H abundances and ionization parameters that are generally consistent with other recent analyses. The lowest-mass galaxy has a large O/H uncertainty, which as a significant effect on anchoring the mass-metallicity relationship (i.e., slope) and tests of its redshift evolution. We also detect the C III] λ\lambdaλ\lambda1907,1909 emission in a z > 8 galaxy from which we determine the most distant C/O abundance to date. This valuable detection provides the first test of C/O redshift evolution out to high-redshift. For neon, we use the high-ionization [Ne III] λ\lambda3869 line to measure the first Ne/O abundances at z>7, finding no evolution in this α\alpha-element ratio. To investigate the Fe abundance, we explore the tentative detection of weak [Fe II] and [Fe III] lines in a z>8 galaxy, which would indicate a rapid build up of metals. Importantly, we demonstrate that properly flux-calibrated and higher S/N spectra are crucial to robustly determine the abundance pattern in z>7 galaxies with NIRSpec/JWST.Comment: Submitted to The Astrophysical Journal Letters. Comments welcom

    CLASSY III: The Properties of Starburst-Driven Warm Ionized Outflows

    Full text link
    We report the results of analyses of galactic outflows in a sample of 45 low-redshift starburst galaxies in the COS Legacy Archive Spectroscopic SurveY (CLASSY), augmented by five additional similar starbursts with COS data. The outflows are traced by blueshifted absorption-lines of metals spanning a wide range of ionization potential. The high quality and broad spectral coverage of CLASSY data enable us to disentangle the absorption due to the static ISM from that due to outflows. We further use different line multiplets and doublets to determine the covering fraction, column density, and ionization state as a function of velocity for each outflow. We measure the outflow's mean velocity and velocity width, and find that both correlate in a highly significant way with the star-formation rate, galaxy mass, and circular velocity over ranges of four orders-of-magnitude for the first two properties. We also estimate outflow rates of metals, mass, momentum, and kinetic energy. We find that, at most, only about 20% of silicon created and ejected by supernovae in the starburst is carried in the warm phase we observe. The outflows' mass-loading factor increases steeply and inversely with both circular and outflow velocity (log-log slope \sim -1.6), and reaches 10\sim 10 for dwarf galaxies. We find that the outflows typically carry about 10 to 100% of the momentum injected by massive stars and about 1 to 20% of the kinetic energy. We show that these results place interesting constraints on, and new insights into, models and simulations of galactic winds.Comment: 34 pages, 16 figures, 6 tables, submitted to Ap

    Interpreting the Si II and C II line spectra from the COS Legacy Spectroscopic SurveY using a virtual galaxy from a high-resolution radiation-hydrodynamic simulation

    Get PDF
    Observations of low-ionization state (LIS) metal lines provide crucial insights into the interstellar medium of galaxies, yet, disentangling the physical processes responsible for the emerging line profiles is difficult. This work investigates how mock spectra generated using a single galaxy in a radiation-hydrodynamical simulation can help us interpret observations of a real galaxy. We create 22,500 C II and Si II spectra from the virtual galaxy at different times and through multiple lines of sight and compare them with the 45 observations of low-redshift star-forming galaxies from the COS Legacy Spectroscopic SurveY (CLASSY). We find that the mock profiles provide accurate replicates to the observations of 38 galaxies with a broad range of stellar masses (10610^6 to 10910^9 MM_\odot) and metallicities (0.02 to 0.55 ZZ_\odot). Additionally, we highlight that aperture losses explain the weakness of the fluorescent emission in several CLASSY spectra and must be accounted for when comparing simulations to observations. Overall, we show that the evolution of a single simulated galaxy can produce a large diversity of spectra whose properties are representative of galaxies of comparable or smaller masses. Building upon these results, we explore the origin of the continuum, residual flux, and fluorescent emission in the simulation. We find that these different spectral features all emerge from distinct regions in the galaxy's ISM, and their characteristics can vary as a function of the viewing angle. While these outcomes challenge simplified interpretations of down-the-barrel spectra, our results indicate that high-resolution simulations provide an optimal framework to interpret these observations.Comment: Accepted for publication in Ap

    CLASSY IX: The Chemical Evolution of the Ne, S, Cl, and Ar Elements

    Full text link
    To study the chemical evolution across cosmic epochs, we investigate Ne, S, Cl, and Ar abundance patterns in the COS Legacy Archive Spectroscopic SurveY (CLASSY). CLASSY comprises local star-forming galaxies (0.02 < z < 0.18) with enhanced star-formation rates, making them strong analogues to high-z star-forming galaxies. With direct measurements of electron temperature, we derive accurate ionic abundances for all elements and assess ionization correction factors (ICFs) to account for unseen ions and derive total abundances. We find Ne/O, S/O, Cl/O, and Ar/O exhibit constant trends with gas-phase metallicity for 12+log(O/H) < 8.5 but significant correlation for Ne/O and Ar/O with metallicity for 12+log(O/H) > 8.5, likely due to ICFs. Thus, applicability of the ICFs to integrated spectra of galaxies could bias results, underestimating true abundance ratios. Using CLASSY as a local reference, we assess the evolution of Ne/O, S/O, and Ar/O in galaxies at z>3, finding no cosmic evolution of Ne/O, while the lack of direct abundance determinations for S/O and Ar/O can bias the interpretation of the evolution of these elements. We determine the fundamental metallicity relationship (FMR) for CLASSY and compare to the high-redshift FMR, finding no evolution. Finally, we perform the first mass-neon relationship analysis across cosmic epochs, finding a slight evolution to high Ne at later epochs. The robust abundance patterns of CLASSY galaxies and their broad range of physical properties provide essential benchmarks for interpreting the chemical enrichment of the early galaxies observed with the JWST.Comment: Accepted for publication in The Astrophysical Journal. 20 pages (main body), 10 figures, 6 Table

    CLASSY VII Ly\alpha\ Profiles: The Structure and Kinematics of Neutral Gas and Implications for LyC Escape in Reionization-Era Analogs

    Full text link
    Lyman-alpha line profiles are a powerful probe of ISM structure, outflow speed, and Lyman continuum escape fraction. In this paper, we present the Lyα\alpha line profiles of the COS Legacy Archive Spectroscopic SurveY, a sample rich in spectroscopic analogs of reionization-era galaxies. A large fraction of the spectra show a complex profile, consisting of a double-peaked Lyα\alpha emission profile in the bottom of a damped, Lyα\alpha absorption trough. Such profiles reveal an inhomogeneous interstellar medium (ISM). We successfully fit the damped Lyα\alpha absorption (DLA) and the Lyα\alpha emission profiles separately, but with complementary covering factors, a surprising result because this approach requires no Lyα\alpha exchange between high-NHIN_\mathrm{HI} and low-NHIN_\mathrm{HI} paths. The combined distribution of column densities is qualitatively similar to the bimodal distributions observed in numerical simulations. We find an inverse relation between Lyα\alpha peak separation and the [O III]/[O II] flux ratio, confirming that the covering fraction of Lyman-continuum-thin sightlines increases as the Lyα\alpha peak separation decreases. We combine measurements of Lyα\alpha peak separation and Lyα\alpha red peak asymmetry in a diagnostic diagram which identifies six Lyman continuum leakers in the CLASSY sample. We find a strong correlation between the Lyα\alpha trough velocity and the outflow velocity measured from interstellar absorption lines. We argue that greater vignetting of the blueshifted Lyα\alpha peak, relative to the redshifted peak, is the source of the well-known discrepancy between shell-model parameters and directly measured outflow properties. The CLASSY sample illustrates how scattering of Lyα\alpha photons outside the spectroscopic aperture reshapes Lyα\alpha profiles as the distances to these compact starbursts span a large range.Comment: 40 pages, 19 figures, 5 tables, submitted to ApJ, comments welcom

    CLASSY VIII: Exploring the Source of Ionization with UV ISM diagnostics in local High-zz Analogs

    Full text link
    In the current JWST era, rest-frame UV spectra play a crucial role in enhancing our understanding of the interstellar medium (ISM) and stellar properties of the first galaxies in the epoch of reionization (EoR, z>6z>6). Here, we compare well-known and reliable optical diagrams sensitive to the main ionization source (i.e., star formation, SF; active galactic nuclei, AGN; shocks) to UV counterparts proposed in the literature - the so-called ``UV-BPT diagrams'' - using the HST COS Legacy Archive Spectroscopic SurveY (CLASSY), the largest high-quality, high-resolution and broad-wavelength range atlas of far-UV spectra for 45 local star-forming galaxies. In particular, we explore where CLASSY UV line ratios are located in the different UV diagnostic plots, taking into account state-of-the-art photoionization and shock models and, for the first time, the measured ISM and stellar properties (e.g., gas-phase metallicity, ionization parameter, carbon abundance, stellar age). We find that the combination of C III] λλ\lambda\lambda1907,9 He II λ1640\lambda1640 and O III] λ\lambda1666 can be a powerful tool to separate between SF, shocks and AGN at sub-solar metallicities. We also confirm that alternative diagrams without O III] λ\lambda1666 still allow us to define a SF-locus with some caveats. Diagrams including C IV λλ\lambda\lambda1548,51 should be taken with caution given the complexity of this doublet profile. Finally, we present a discussion detailing the ISM conditions required to detect UV emission lines, visible only in low gas-phase metallicity (12+log(O/H) 8.3\lesssim8.3) and high ionization parameter (log(UU) 2.5\gtrsim-2.5) environments. Overall, CLASSY and our UV toolkit will be crucial in interpreting the spectra of the earliest galaxies that JWST is currently revealing.Comment: 31 pages, submitted to ApJ, comments welcom

    The COS Legacy Archive Spectroscopy SurveY (CLASSY) Treasury Atlas

    Full text link
    Far-ultraviolet (FUV; ~1200-2000 angstroms) spectra are fundamental to our understanding of star-forming galaxies, providing a unique window on massive stellar populations, chemical evolution, feedback processes, and reionization. The launch of JWST will soon usher in a new era, pushing the UV spectroscopic frontier to higher redshifts than ever before, however, its success hinges on a comprehensive understanding of the massive star populations and gas conditions that power the observed UV spectral features. This requires a level of detail that is only possible with a combination of ample wavelength coverage, signal-to-noise, spectral-resolution, and sample diversity that has not yet been achieved by any FUV spectral database. We present the COS Legacy Spectroscopic SurveY (CLASSY) treasury and its first high level science product, the CLASSY atlas. CLASSY builds on the HST archive to construct the first high-quality (S/N_1500 >~ 5/resel), high-resolution (R~15,000) FUV spectral database of 45 nearby (0.002 < z < 0.182) star-forming galaxies. The CLASSY atlas, available to the public via the CLASSY website, is the result of optimally extracting and coadding 170 archival+new spectra from 312 orbits of HST observations. The CLASSY sample covers a broad range of properties including stellar mass (6.2 < logM_star(M_sol) < 10.1), star formation rate (-2.0 < log SFR (M_sol/yr) < +1.6), direct gas-phase metallicity (7.0 < 12+log(O/H) < 8.8), ionization (0.5 < O_32 < 38.0), reddening (0.02 < E(B-V < 0.67), and nebular density (10 < n_e (cm^-3) < 1120). CLASSY is biased to UV-bright star-forming galaxies, resulting in a sample that is consistent with z~0 mass-metallicity relationship, but is offset to higher SFRs by roughly 2 dex, similar to z >~2 galaxies. This unique set of properties makes the CLASSY atlas the benchmark training set for star-forming galaxies across cosmic time.Comment: Accepted for publication in Ap
    corecore