6 research outputs found

    SSL Everywhere: Leveraging HSMs for Enhanced Intra-Domain Security

    Get PDF
    In a world where digitalization is rapidly advancing, the security and privacy of intra-domain communication within organizations are of critical concern. The imperative to secure communication channels among physical systems has led to the deployment of various security approaches aimed at fortifying networking protocols. However, these approaches have typically been designed to secure protocols individually, lacking a holistic perspective on the broader challenge of intra-domain communication security. This omission raises fundamental concerns about the safety and integrity of intra-domain environments, where all communication occurs within a single domain. As a result, this thesis introduces SSL Everywhere, a comprehensive solution designed to address the evolving challenges of secure data transmission in intra-domain environments. By leveraging Hardware Security Modules (HSMs), SSL Everywhere aims to utilize the Secure Socket Layer (SSL) protocol within intra-domain environments to ensure data confidentiality, authentication, and integrity. In addition, solutions proposed by academic researchers and industry have not addressed the issue in a holistic and integrative manner, as they only apply to specific types of environments or servers, and do not utilize all cryptographic operations for robust security. Thus, SSL Everywhere bridges this gap by offering a unified and comprehensive solution that includes certificate management, key management practices, and various security services. By acknowledging the importance of secure communication principles and their application within the unique context of intra-domain communication, this research contributes to the ongoing discourse on network security and provides a promising pathway to secure the future of intra-domain environments

    HSM4SSL: Leveraging HSMs for Enhanced Intra-Domain Security

    No full text
    In a world where digitization is rapidly advancing, the security and privacy of intra-domain communication within organizations are of critical concern. The imperative to secure communication channels among physical systems has led to the deployment of various security approaches aimed at fortifying networking protocols. However, these approaches have typically been designed to secure protocols individually, lacking a holistic perspective on the broader challenge of intra-domain communication security. This omission raises fundamental concerns about the safety and integrity of intra-domain environments, where all communication occurs within a single domain. As a result, this paper introduces HSM4SSL, a comprehensive solution designed to address the evolving challenges of secure data transmission in intra-domain environments. By leveraging hardware security modules (HSMs), HSM4SSL aims to utilize the Secure Socket Layer (SSL) protocol within intra-domain environments to ensure data confidentiality, authentication, and integrity. In addition, solutions proposed by academic researchers and in the industry have not addressed the issue in a holistic and integrative manner, as they only apply to specific types of environments or servers and do not utilize all cryptographic operations for robust security. Thus, HSM4SSL bridges this gap by offering a unified and comprehensive solution that includes certificate management, key management practices, and various security services. HSM4SSL comprises three layers to provide a standardized interaction between software applications and HSMs. A performance evaluation was conducted comparing HSM4SSL with a benchmark tool for cryptographic operations. The results indicate that HSM4SSL achieved 33% higher requests per second (RPS) compared to OpenSSL, along with a 13% lower latency rate. Additionally, HSM4SSL efficiently utilizes CPU and network resources, outperforming OpenSSL in various aspects. These findings highlight the effectiveness and reliability of HSM4SSL in providing secure communication within intra-domain environments, thus addressing the pressing need for enhanced security mechanisms

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    Background: Pancreatic surgery remains associated with high morbidity rates. Although postoperative mortality appears to have improved with specialization, the outcomes reported in the literature reflect the activity of highly specialized centres. The aim of this study was to evaluate the outcomes following pancreatic surgery worldwide.Methods: This was an international, prospective, multicentre, cross-sectional snapshot study of consecutive patients undergoing pancreatic operations worldwide in a 3-month interval in 2021. The primary outcome was postoperative mortality within 90 days of surgery. Multivariable logistic regression was used to explore relationships with Human Development Index (HDI) and other parameters.Results: A total of 4223 patients from 67 countries were analysed. A complication of any severity was detected in 68.7 percent of patients (2901 of 4223). Major complication rates (Clavien-Dindo grade at least IIIa) were 24, 18, and 27 percent, and mortality rates were 10, 5, and 5 per cent in low-to-middle-, high-, and very high-HDI countries respectively. The 90-day postoperative mortality rate was 5.4 per cent (229 of 4223) overall, but was significantly higher in the low-to-middle-HDI group (adjusted OR 2.88, 95 per cent c.i. 1.80 to 4.48). The overall failure-to-rescue rate was 21 percent; however, it was 41 per cent in low-to-middle-compared with 19 per cent in very high-HDI countries.Conclusion: Excess mortality in low-to-middle-HDI countries could be attributable to failure to rescue of patients from severe complications. The authors call for a collaborative response from international and regional associations of pancreatic surgeons to address management related to death from postoperative complications to tackle the global disparities in the outcomes of pancreatic surgery (NCT04652271; ISRCTN95140761)
    corecore