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Abstract

In a world where digitalization is rapidly advancing, the security and privacy of intra-domain

communication within organizations are of critical concern. The imperative to secure commu-

nication channels among physical systems has led to the deployment of various security ap-

proaches aimed at fortifying networking protocols. However, these approaches have typically

been designed to secure protocols individually, lacking a holistic perspective on the broader

challenge of intra-domain communication security. This omission raises fundamental concerns

about the safety and integrity of intra-domain environments, where all communication occurs

within a single domain. As a result, this thesis introduces SSL Everywhere, a comprehen-

sive solution designed to address the evolving challenges of secure data transmission in intra-

domain environments. By leveraging Hardware Security Modules (HSMs), SSL Everywhere

aims to utilize the Secure Socket Layer (SSL) protocol within intra-domain environments to

ensure data confidentiality, authentication, and integrity.

In addition, solutions proposed by academic researchers and industry have not addressed the

issue in a holistic and integrative manner, as they only apply to specific types of environments

or servers, and do not utilize all cryptographic operations for robust security. Thus, SSL Every-

where bridges this gap by offering a unified and comprehensive solution that includes certificate

management, key management practices, and various security services.

By acknowledging the importance of secure communication principles and their application

within the unique context of intra-domain communication, this research contributes to the on-

going discourse on network security and provides a promising pathway to secure the future of

intra-domain environments.

Keywords: Intra-Domain Communication, Computer Networks, Network Security, Hardware

Security Module, Certificate Management, Secure Sockets Layer, Certificate Authority.

ii



Summary For Lay Audience

In today’s digital age, ensuring the security of our online communication has become more

critical than ever. One area where this security is paramount is within organizations, where

multiple servers are placed to handle various requests. The optimal solution to ensure secure

communication between those servers is to deploy Secure Socket Layer (SSL). SSL is a fun-

damental security protocol that helps transform readable data into an unreadable format during

transmission. Moreover, Deploying SSL in a communication channel verifies the identities of

the two parties communicating with each other.

While SSL is a powerful protocol, implementing it within the communication channels in

organizational domains can be quite challenging. SSL demands extensive cryptographic prac-

tices to ensure that cryptographic keys and digital certificates are correctly configured and up

to date. This complexity often leaves organizations grappling with the complexities of SSL

deployment.

Thus, multiple security mechanisms for the currently employed networking protocols have

been proposed as potential alternatives to SSL. Plus, multiple solutions have been presented

to overcome the issue of securing organizational communication. However, those solutions

always have a gap in addressing the comprehensive security needs of intra-domain environ-

ments. These environments, where all communication occurs within a single domain, such as

an organization, demand a unified approach to ensure communication security. The existing

security mechanisms typically focus on securing individual aspects and lack the comprehensive

protection required for sensitive data transmission.

As a result, this thesis introduces SSL Everywhere, a standardized solution designed to address

the evolving challenges of secure data transmission in intra-domain environments. SSL Every-

where leverages Hardware Security Modules (HSMs), which are hardware devices that act as

a root of trust to perform various cryptographic operations, to fully utilize SSL protocol within

intra-domain environments.

iii
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Chapter 1

Introduction

In an era defined by rapid technological advancement and increasing digitalization, security

and privacy have emerged as paramount concerns for individuals, businesses, and organiza-

tions worldwide. The seamless exchange of sensitive information across networks and the

Internet has necessitated the development of robust mechanisms to protect data integrity, con-

fidentiality, and authenticity. Consequently, a great deal of work has gone into making internet

communication channels secure. However, as the digital landscape evolves and networks ex-

pand to encompass a multitude of devices, a new dimension of security challenges arises. This

is particularly evident in intra-domain environments, where organizations face a growing need

to secure communication within their own networks. In an intra-domain environment, all com-

munications are confined within the parameters of a single Autonomous System (AS). This term

refers to a collection of interconnected physical network components, such as servers, data

centers, and other network devices that are administered and overseen by one organizational

domain. Such an environment is characterized by the internal exchange of information and

services like email and web browsing, without extending beyond the organization’s network

boundaries to other domains [1]. Figure 1.1 shows an example of intra-domain communication

within autonomous systems as well as inter-domain communication between them. Augment-

ing intra-domain networks’ capacities to include many devices with network capabilities raises

the importance of securing communication in those environments, as in 2020, 68% of ma-

1



2 Chapter 1. Introduction

Figure 1.1: Intra-Domain Communication Within Autonomous Systems

licious activities and security-related incidents within organizations are attributed to insider

employees, often with compromised devices [2]. This underscores the urgency of addressing

security concerns beyond the public Internet.

Servers within intra-domain environments are compelled to communicate with clients and

peers to exchange resources; hence, each server requires a mechanism to secure this commu-

nication. Thus, various security mechanisms are employed to supposedly secure those com-

munication channels. Unfortunately, however, those mechanisms lack sufficient protection to

encrypt data and authenticate endpoints, opening the floor to attacks from compromised and

misconfigured machines.

This thesis is focused on addressing and pointing out the current insecurities intra-domain

communication is facing and proposing a novel architecture to fortify communication channels

within organizational networks.

1.1 Motivation

Primarily, organizations that employ multiple servers to handle various requests utilize load

balancers or reverse proxies to intercept traffic emanating from multiple hosts or endpoints,
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separate the received requests and distribute them across multiple back-end servers as demon-

strated in Figure 1.2. The load balancing process is vital for all cloud environments as it is

proven to enhance reliability and availability by monitoring servers’ statuses and directing re-

quests to available servers only [3], and relieving back-end servers from the tiring process of

decrypting traffic by employing Secure Socket Layer (SSL) Termination, which also aids intru-

sion detection systems to detect anomaly packets before forwarding them to the servers [4].

However, this process poses security risks as it creates insecure channels between the reverse

proxy and the back-end servers, leaving communication vulnerable to various types of attacks.

Figure 1.2: Reverse Proxy Example

Furthermore, since 2016, the Certificate Authority CA/Browser Forum, responsible for setting

standards in the issuance and management of SSL certificates, has ceased issuing SSL certifi-

cates for servers with private IP addresses. This implies that servers within an intra-domain

environment are unable to meet SSL communication requirements for encryption and endpoint

authentication [5].

Another concern arises from the intricate task of managing certificates for servers with dynamic

IP addresses, which presents a complex and challenging task. In scenarios where servers are

assigned new IP addresses dynamically, it requires the issuance of a new certificate each time

the IP address changes. This dynamic nature of IP addresses, common in many modern net-
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work configurations, can quickly lead to certificate management complexities. The traditional

approach of generating and deploying certificates for each IP address change not only intro-

duces administrative overhead but also raises questions about certificate validity, revocation,

and the seamless continuity of secure communication [6].

Along with the aforementioned issues, the current development of secure intra-domain commu-

nication is being underrepresented by both academia and implemented systems, with reasons

still being obscure. Against this background, this situation is continuously giving rise to count-

less security breaches and attacks within organizations, making most intra-domain attacks rise

from the fact that intra-domain communication; particularly between servers remains, by and

large, unencrypted and unauthenticated [7][8]. However, Certificate usage for SSL establish-

ment between the load balancer and the servers and also between all endpoints was suggested

by Boisrond in [9] as the optimum solution to address the insecure communication issue.

Having said the above, we believe that there is a significant opportunity to develop an inno-

vative architecture that addresses these challenges. Such an architecture would streamline the

process of securing communication within intra-domain environments. Our architecture would

not only enhance operational efficiency and security but also reduce the complexity currently

associated with securing intra-domain communication. By tackling these issues head-on, the

proposed solution aims to provide a more seamless, secure, and scalable approach to secure

internal networks.

Morevoer, delving previously into the research on autonomous vehicles cyber-attacks high-

lighted the critical importance of securing digital communication channels [10]. This prior

work served as a strong motivator to explore security solutions in the realm of network com-

munication. Recognizing the critical need to protect communication within intra-domain en-

vironments, efforts were aimed at extending the research to address evolving challenges and

potential vulnerabilities within such environments.
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1.2 Objectives

The main objective of this research is to build a standardized architecture that addresses the

contemporary security challenges within intra-domain environments. This architecture is de-

signed to reduce the complexities associated with securing data exchange within organiza-

tional networks, streamline certificate management for servers, and provide a unified solution

that enhances communication security while ensuring seamless continuity. The specific sub-

objectives aligned with this main objective are as follows:

1. Conduct a comprehensive study and analysis of existing security solutions and practices

within intra-domain environments, assessing their strengths, weaknesses, and applicabil-

ity.

2. Design and implement a unified security framework for intra-domain environments that

offers security services, including encryption, authentication, and data integrity mea-

sures, ensuring comprehensive protection of data in transit.

3. Assess the performance of the proposed architecture in accommodating scaling network

traffic and communication demands, with a focus on minimizing latency and maximizing

throughput.

1.3 Research Methodology

This section outlines the methodologies in this research based on the pre-defined objectives.

The first objective contains a comprehensive study of the strengths and weaknesses of current

intra-domain security mechanisms. It includes the following:

• A thorough review of the current security solutions and protocols in intra-domain envi-

ronments, assessing their implementation and effectiveness.

• An analysis of the strengths, vulnerabilities, and limitations of these security measures

provides a critical perspective on their practical applicability.
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• A comparison of recently developed security technologies and approaches.

• Pointing out specific areas where current security solutions fall short, setting the stage

for the development of our architecture.

Moving on to the second objective, it is concerned with proposing and developing a standard-

ized architecture to overcome the indicated weaknesses. This includes:

• Propose developing an integrated structure that provides various security services for

intra-domain environments, encompassing diverse environmental characteristics. This

includes securing communication at the application level, ensuring robust protection be-

tween servers within the same network, and extending security measures to cover inter-

actions between different networks.

• Design the architecture of the framework, detailing the integration of the various com-

ponents within the architecture.

• Define the security services provided by the architecture.

• Implement and build the proposed architecture in a bottom-up approach.

The last objective is to evaluate the performance of the developed architecture by completing

the following tasks:

• Choose the appropriate metrics to be evaluated.

• Choose a conventional approach to compare with.

• Choose the appropriate software tools. to perform the assessments.

• Analyze the results and propose solutions to overcome weaknesses.

This structured approach provides a clear roadmap for how each objective is achieved. More-

over, Chapter 3, Chapter 4, and Chapter 5 explain the methodology in more details.
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1.4 Outline

This thesis is structured as follows, Chapter 2 provides a discussion on commonly used net-

working protocols within organizational networks along with their security measures. These

protocols are examined in detail to clarify their characteristics and underscore their inherent

vulnerabilities. Plus, an exploration of prior research endeavors is undertaken, encompass-

ing existing solutions aimed at addressing these issues. Subsequently, Chapter 3 delves into

a comprehensive presentation and detailed discussion of our architecture, including the roles

and functionalities of its integral components. Then, we shed light on the design process of

our architecture and provide insights into its development and underlying principles in Chapter

4. In Chapter 5, a comprehensive performance assessment and analysis of the architecture are

presented, including a detailed discussion of the achieved results. This chapter also explores

methods for enhancing the architecture and addressing its inherent weaknesses. In conclu-

sion, Chapter 6 provides the final insights and conclusions drawn from the research, offering a

comprehensive summary of the key findings, contributions, and implications of the study.



Chapter 2

Background & Literature Review

The development of security mechanisms to secure individual networking protocols for com-

munication within one AS or multiple ASs has been a focal point of research efforts. However,

hardly any literature considered the problem in a comprehensive and holistic manner [8]. In

this chapter, we provide a background on the essential components on the key elements and

concepts that form the basis of our research. Plus, we offer a comprehensive overview of the

networking protocols currently deployed, along with an examination of their accompanying

security mechanisms. We also delve into an analysis of their vulnerabilities. Furthermore, we

explore solutions put forth by both academic and industrial realms, which have made contribu-

tions to enhancing security in intra-domain environments. This chapter lays the foundation for

understanding the context and significance of our architecture in addressing these challenges.

2.1 Background

In what follows, we provide essential context for understanding the foundation upon which our

study is built. It includes secure communication principles, which form the basis for ensuring

authenticity, data confidentiality and integrity during data transmission. Key elements of this

foundation include the use of SSL, a cryptographic protocol that plays a pivotal role in securing

data exchange over computer networks, particularly the Internet. Furthermore, the section

8
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delves into the significance of X.509 certificates, which are fundamental to authenticating the

identity of certificate holders and establishing trust in secure communication. Additionally, we

explore Hardware Security Modules, which are dedicated hardware devices that play a crucial

role in secure key management and cryptographic operations that are used in our architecture.

2.1.1 Secure Communication Principles

Secure communication principles are the foundation of protecting data during transmission

across networks. These principles include three fundamental elements: privacy, authentication,

and integrity [11].

Privacy

Firstly, in the context of computer networks, particularly in an era characterized by an increas-

ing dependence on computer networks and the Internet, data privacy emerges as a paramount

concern for safeguarding user rights and preserving information security. At its core, data

privacy entails the protection of sensitive information from unauthorized access or disclosure.

Data privacy rights are fundamental in ensuring that individuals’ personal information is han-

dled responsibly and that they have the autonomy to decide how their data is used and shared.

Encryption, a powerful method in the realm of privacy, helps transform data into an unreadable

format (ciphertext) to ensure that it remains confidential and secure, further enhancing the safe-

guarding of privacy. Various methods are utilized for this purpose, including classic techniques

like Data Encryption Standard (DES) and modern approaches such as Rivest-Shamir-Adleman

(RSA) [12].

Authentication

Similar to encryption, authentication also stands as a crucial component in communication se-

curity, serving the essential purpose of verifying the identities of connecting entities. It involves

the validation of provided credentials, such as usernames and passwords, digital certificates,

or other authentication tokens, to ascertain the legitimacy of the connecting party. Effective

server authentication not only safeguards sensitive data but also helps prevent unauthorized
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access attempts [13].

Integrity

Finally, integrity refers to the quality or state of being whole, unaltered, and uncorrupted. It

encompasses the assurance that data, files, or information have not been tampered with, altered,

or modified by unauthorized parties during storage, transmission, or processing. Data integrity

ensures that information remains accurate, complete, and reliable, maintaining its original state

and consistency [14].

2.1.2 Secure Socket Layer (SSL)

These communication principles are the fundamental building blocks for SSL. SSL, which

stands for Secure Sockets Layer, is a cryptographic protocol used to secure data transmission

over computer networks, particularly the Internet. SSL was developed to provide a secure

and encrypted communication channel between a client and a server. It ensures that data ex-

changed between the client and server remains confidential and protected from eavesdropping

or tampering by malicious actors. Successful SSL implementation achieves the three essential

security attributes; encryption, authentication, and integrity for all exchanged communication.

The usage of SSL depends on digital certificates (e.g. X.509 certificates) to authenticate end-

points and exchange keys to encrypt/decrypt future communication. To perform mutual au-

thentication between two endpoints, each endpoint involved in SSL communication should

possess a digital certificate that contains information about its identity and a public key. These

digital certificates are issued and validated by a Certificate Authority (CA), which is a trusted

third party that is responsible for generating digital certificates for endpoints.

In addition to authentication, digital certificates facilitate the secure exchange of encryption

keys between the client and the server. During the SSL handshake, a process that initiates a se-

cure connection, the client and server exchange cryptographic parameters, negotiate encryption

algorithms, and validate each other’s certificates. Subsequently, they agree on a shared secret

key, which is used for encrypting and decrypting future communication. This key exchange
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process ensures that even if a malicious entity intercepts the data, it cannot decipher the content

without the appropriate key [15],[16].

2.1.3 X.509 Certificates

While SSL serves as a critical protocol for securing data transmission over networks, its ef-

fectiveness relies on the utilization of X.509 certificates. X.509 certificates are a standardized

format of digital certificates that form the basis of the SSL protocol. It plays a crucial role

in verifying the identity of an endpoint and establishing encrypted and authenticated commu-

nication channels over computer networks. Moreover, it also includes the certificate chain,

which represents a hierarchical sequence of certificates that establishes a trust path from the

certificate being presented to a trusted root certificate. This chain of certificates, also known

as the certification path, allows clients to verify the authenticity of the presented certificate by

following the digital signatures and relationships between certificates in the chain.

The root certificate at the top of this chain is inherently trusted, forming the basis of trust for

the entire certificate infrastructure. This mechanism ensures that the certificate holder can be

reliably authenticated, and the communication can proceed with confidence in its security and

integrity [16],[17].

The generation of an X.509 certificate involves a Certificate Signing Request (CSR). CSRs

play an important role, as they are utilized to gather essential information from a certificate

applicant (client), such as their public key, distinguished name, and optional organizational

information. Once collected, this information is encapsulated within the CSR, which is then

submitted to a CA for signing. The CA’s digital signature on the CSR results in the creation of

an X.509 certificate [17].

2.1.4 Hardware Security Module

The security of cryptographic keys used in SSL and the protection of sensitive data are bol-

stered by Hardware Security Modules (HSMs), which are tamper-resistant hardware devices

designed to provide secure key storage, cryptographic operations, and protection of sensitive
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data. HSMs enhance the security of cryptographic operations by securely generating, storing,

and managing cryptographic keys. They perform cryptographic operations such as encryption,

decryption, digital signatures, and secure hash functions within a secure boundary, protecting

keys from external attacks. HSMs also feature built-in random number generators, resistance

to physical tampering, compliance with cryptographic standards, and secure key backup and

recovery mechanisms. These devices are isolated from host systems and are widely used in

security-critical environments to safeguard sensitive data and ensure compliance with security

regulations.

HSMs comply with the Federal Information Processing Standard (FIPS) 140-2 which is a

standard for developing HSMs. It mandates HSMs to prevent unauthorized access to sensitive

data, provide up-to-date cryptographic algorithms, and undergo a series of rigorous testing

and evaluation. The FIPS 140-2 has four security levels, with the higher levels offering more

protective features, where level 1 provides the lowest degree of security and lists basic security

requirements, whereas level 4 provides a complete envelope of protection intended to detect

and respond to all unauthorized physical attacks [18].

For an HSM to become a FIPS 140-2 compliant, it must employ the FIPS 140-2 algorithms,

key management techniques, and authentication procedures. These three key areas encompass

a wide range of design and implementation security requirements, including, but not limited

to, those associated with:

• Cryptographic module ports and interfaces: It states that a cryptographic module must

have four logical interfaces: the data input interface, the data output interface, the con-

trol input interface, and the status output interface. These account for incoming data,

outgoing data, module operation controls, and output signals and status indicators, re-

spectively.

• Roles, services, and authentication: It states that a cryptographic module must support a

user role and a crypto officer role, a service output that shows the status of a module, and

either role-based authentication or identity-based authentication mechanisms, depending

on the security level.
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• Physical security and environmental failure protection and testing: It requires a tamper

detection or response envelope with tamper response and zeroization circuitry, which is

circuitry that facilitates the automatic erasure of sensitive information, such as plaintext

data and cryptographic keys, if the module is tampered with or stolen.[19]

2.2 Literature Review

Having established the foundational concepts of our research, this section explores the realm

of established secure networking protocols, discussing their inner workings, strengths, and

vulnerabilities. This analysis provides insights into the current state of secure communication

technologies. Furthermore, we examine both academic and industrial contributions that have

aimed to address the challenges posed by intra-domain communication weaknesses.

2.2.1 Existing Secure Networking Protocols

This section dives into discussing the details of some of the most widely adopted networking

protocols, each playing a pivotal role in secure data transmission within intra-domain environ-

ments.

HTTP

Hypertext Transfer Protocol (HTTP) is a client-server and Peer-to-Peer (P2P) protocol that is

one of the most utilized protocols today for data communication for the World Wide Web [20].

Employing HTTP for communication on the Internet allowed the exchange of information in

the clear. Thus, the increase of sensitive application data has led to a debate on how clients and

servers can communicate securely which obliged the improvement to a more secure version.

HTTPS is the secure version of HTTP that engages SSL protocol to exchange HTTP messages

between the client and the server in an encrypted and authenticated channel to protect from

eavesdropping, spoofing, and other active attacks, making most domains and servers establish

connections using HTTPS [21]. As of 2022, more than 79% of all websites on the Internet use

HTTPS as the default protocol for communication [22]. Two methods are employed to force
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the use of HTTPS in web browsers which are:

1. HTTPS Redirection: HTTP redirects are used in web browsers in several scenarios. For

instance, if a user wanted to access a website that has been previously updated or trans-

formed to another new URL, the server responds with an HTTP status code 3xx to redi-

rect to the new URL so the user can access the new domain [23]. Moreover, redirection

is also used when a server that communicates using HTTPS transfers the communication

from HTTP to HTTPS. For example, If a user wants to access a server that owns a valid

SSL certificate and performs communication over HTTPS, by explicitly inputting HTTP

in the URL, or by means of social engineering, a user is targeted to click an HTTP URL

to initiate an attack, for example, http://www.example.com, the server sends a response

back to the browser with an HTTP status code 301 (Internal Redirect), which is one form

of HTTP 3xx redirection codes that indicates that the specified server is only accessible

via HTTPS, hence forming an encrypted channel for secure communication between the

browser and the server [24], as shown in figure 2.1.

Figure 2.1: Internal HTTP to HTTPS Redirection

All browsers present to their users any issues regarding secure channel establishment,

such as when the browser is unable to validate the server’s SSL certificate due to its un-
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known issuer, mismatched domain names, if the certificate is expired, and so on, prompt-

ing the user to choose to continue interacting with the server in spite of the mentioned

issues [25]. This practice is known as “Click(ing) Through” security [26]. However,

browsers should not trust users as the main defense mechanism since oblivious users al-

low adversaries to exploit their illiteracy and lack of knowledge to break the most secure

systems. It was surveyed that “Click(ing) Through” security stopped only 1 out of 300

users from proceeding to a banking website [27].

Despite the fact that HTTPS redirection provides security service, it still leaves room for

an adversary to launch an SSL stripping attack to strip the SSL out of the communica-

tion and form an insecure channel as shown in figure 2.2. SSL stripping is a form of

Man in The Middle (MiTM) attack that takes place when the user provides HTTP in the

URL when communicating with a server that employs HTTPS. An attacker can eaves-

drop and intercept the communication to prevent HTTPS redirection, by communicating

with the server via HTTPS and with the user by HTTP. From this point forward, the ad-

versary decrypts the communication received from the server and forwards it to the user

in plaintext, and also forwards the plaintext data received from the user to the server in

an encrypted manner [24], [28].

2. HTTP Strict Transport Security (HSTS) HSTS is documented in RFC 6797 from 2012

as a “mechanism enabling websites to declare themselves accessible only via secure

connections and/or for users to be able to direct their user agent(s) to interact with given

sites only over secure connections” [26]. In other words, HSTS can be interpreted as a

security policy to mitigate SSL stripping attacks by forcing the employment of SSL in

web browsers. This is declared by web servers using HTTP response headers.

HSTS may operate between clients and servers either dynamically or statically. In dy-

namic operation, whenever an HSTS-enabled server is requested, it sends back a re-

sponse header called the “Strict-Transport-Security” header with various parameters,

such as the “max-age” that states the time for the browser to treat the domain as a trusted

HSTS domain, to enforce the client to adhere to HTTPS communication. However, the
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Figure 2.2: SSL Stripping Attack

HSTS header should be sent over HTTPS only and should be ignored by the browser if

sent over HTTP. That being said, dynamic HSTS still addresses the Trust-On-First-Use

(TOFU) issue [24].

On the contrary, static HSTS which is also known as “HSTS Preloading” defines a special

list that is used and stored by most major browsers such as Chrome, Safari, Firefox, etc.

that contains every domain that enables HSTS to be indicated as HTTPS only. Adding the

domain to the HSTS preload list requires submitting a request via https://hstspreload.org.

In this regard, browsers terminate HTTP requests before sending them to HSTS-enabled

servers, and without prompting the user to the “Click(ing) Through” security [29], as

shown in figure 2.3.

SMTP

The process of submitting a mail from a message user agent (MUA), e.g., Microsoft Outlook,

to the email infrastructure, and relaying that mail to a trusted third party (from SMTP server

to SMTP server; P2P), uses the Simple Mail Transfer Protocol (SMTP) [RFC2821] [30] that

was designed in 1982 to transport and deliver emails over the Internet. However, using SMTP
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Figure 2.3: Internal HTTP Termination by Browser

standalone, communication was sent in clear text between clients and servers, leaving infor-

mation unencrypted and endpoints unauthenticated. likewise, Post Office Protocol (POP3) and

Internet Message Access Protocol (IMAP) which are responsible for retrieving emails from the

server to the computer also operate without confidentiality and authenticity [31]. That being

said, the development of secure SMTP, POP3, and IMAP protocols were introduced in early

1997 by the IANA as the Implicit TLS by modern standards [32]. Implicit TLS is defined to be

used over port 465 for SMTP, and ports 995 and 993 for POP3 and IMAP, respectively [31].

It secures the connection by starting a TLS handshake and then exchanging all commands and

communication as encrypted TLS data. However, since this was not submitted to the IETF

as an RFC, port 465 was used for another application and Implicit TLS has been deprecated

for SMTP [33]. Against this background, the IETF introduced STARTTLS, which is a protocol

command that announces starting a TLS session using port 587 [34], as illustrated in figure 2.4.

The process starts with the Transmission Control Protocol (TCP) handshake between the client

and server to identify each other. After which the client issues the EHLO command to obtain

the server’s capabilities. After the server announces its TLS capability (250 STARTTLS), the

client gives the STARTTLS command, waiting for the code 220 (server is ready to start TLS),

hence TLS handshake begins. However, if the client receives a code 454 (TLS is not currently

available) or if certificate validation fails, the client decides whether to abort the connection
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Figure 2.4: Securing SMTP Messages With STARTTLS

or fall back to send the message in plaintext by showing users TLS exceptions and prompting

them to decide.

The usage of STARTTLS introduces drawbacks and vulnerabilities. First, STARTTLS un-

doubtedly adds some latency to the SMTP connection process due to its negotiation process.

Moreover, since the initial TCP connection is unencrypted, IP addresses are sent on the clear,

hence allowing adversaries to initiate spoofing and command injection attacks. additionally, a

STARTTLS stripping attack can be launched by intercepting the communication and prevent-

ing the server to send the response code 220, this can easily downgrade the communication to

plaintext [31].

According to a survey performed by Chan et al., in [33] after analyzing 681GB of packet cap-

ture files that correspond to HTTP, SMTP, IMAP, POP3, and FTP, from 2008 to 2017, results

illustrated that STARTTLS is significantly more applied than the Implicit TLS for SMTP traf-

fic, as traffic that used STARTTLS option was approximately 20 times more than the Implicit

TLS variant. However, the IETF states that “It is desirable to migrate core protocols used by

MUA software to Implicit TLS over time” [34].
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TCP

Despite the fact that SSL/TLS is being progressively adopted in almost all data transmission, a

considerable portion of TCP traffic remains unencrypted. Hence, the development of TCPCrypt

was mandatory to ensure the confidentiality of exchanged communication through the internet.

TCPCrypt is a TCP extension intended to accomplish end-to-end encrypted channel between

any two applications that use TCP as their communication protocol (Client-Server, P2P). Fig-

ure 2.5 illustrates the TCPCrypt mechanism [35].

Figure 2.5: TCPCrypt Connection Establishment

The process starts when the client initiates a TCP connection and requests the server to encrypt

the upcoming communication. Similar to SSL/TLS, the server accepts by providing its public-

cipher suite, then the client chooses an algorithm, presents its symmetric-cipher suite, and

sends a random nonce and its public key. Finally, the server encrypts the master key used for

upcoming encryption using the client’s public key and forwards it to the client, allowing all

further communication to be encrypted.

A key benefit of TCPCrypt, it does not require any configuration or changes to applications

to perform encryption [35]. However, if one endpoint does not support TCPCrypt, all com-

munication will fall back to standard plaintext TCP, which is referred to as Opportunistic En-

cryption, which makes TCPCrypt vulnerable against MiTM. Moreover, Standard TCPCrypt

does not guarantee authenticity for communication between endpoints, as it typically does not
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involve X.509 certificates or passwords, as opposed to SSL/TLS [36].

DHCP

The first protocol a new host invokes when connecting to a network is Dynamic Host Con-

figuration Protocol (DHCP), which supports new clients with network configuration parame-

ters (subnet mask, IP address, gateway IP address, etc.). Although DHCP is one of the most

used client-server protocols in the networking realm, it possess a significant security risk as

DHCP communication is sent and received in plain text and does not involve any authentica-

tion mechanism which contributes to performing the so-called “starvation/spoofing attack”. It

occurs when an insider launches a DoS attack targeting the DHCP server to exhaust the IP

address pool. Hence, DHCP messages from new clients intending to join the network will be

transferred to an adversary that acts as a DHCP server. The attacker assigns the new client with

a legitimate IP address; however, the rogue server also assigns its IP address as the gateway.

Thus, any communication sent from the victim is intercepted and sniffed by the attacker [37].

Although DHCP Snooping prevents starvation attacks it still opens the floor for other kinds of

attacks since it doesn’t achieve confidentiality and authenticity as shown in [38].

DHCP Snooping is the recognized and documented defense mechanism against starvation at-

tacks, it classifies interfaces/ports into trusted and untrusted. If any DHCP message normally

sent by a server is received through an untrusted port will be discarded, and other messages that

are normally sent by clients are filtered based on their DHCP MAC addresses, Ethernet header

MAC addresses, and IP addresses. Moreover, DHCP Snooping makes use of a binding table

to register IP and MAC addresses for all the traffic the switch sees to make filtering decisions

[39].

To epitomize the mentioned networking protocols and the standard security mechanism each

protocol implements to mitigate attacks and secure communication, Table 2.1 compares if the

security mechanism applies for P2P communication, performs encryption, based on SSL to

perform authentication and encryption, and if it enforces encryption or terminates the commu-

nication when one party is not configured with the same mechanism.
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Table 2.1: Comparison Between Security Mechanisms of Mentioned Networking Protocols
Protocol Security Mechanism Peer-to-Peer Achieves Encryption SSL-Based Forces Encryption

HTTP
HTTPS Yes Yes Yes No

HTTPS/HSTS No Yes Yes Yes

SMTP STARTTLS Yes Yes Yes No

TCP TCPCrypt Yes Yes No No

DHCP DHCP Snooping No No - -

2.3 Current Solutions

While we explore the challenges associated with the established networking protocols and

their security measures, it becomes evident that the ever-evolving landscape of secure com-

munication calls for innovative approaches. However, although a bulk of research has been

concentrated on the development of load balancing techniques and algorithms to enhance their

performance and reliability [40], research topics that consider encrypting the back-end com-

munication channels are still in infancy. Moreover, research papers that focused on improving

the performance of intra-domain routing protocols and fixing their instabilities lacked the in-

clusion of solutions for unencrypted and unauthenticated communication between end-points

in intra-domain environments [41].

One approach that addressed the issue of intra-domain communication and developed an SSL-

based framework to improve the authenticity of DHCP communication was proposed by Shue

et. al., in [8]. The framework relies on the configuration of a public-key pair for the local or-

ganization’s domain and servers and utilizes the domain’s private key to sign generated server

certificates to prove authenticity, each of which contains each server’s public key. Then, The

DHCP server is used to issue users’ certificates after verifying their authenticity using a captive

portal to enter their credentials. Their approach successfully achieved endpoints authenticity as

their goal was to mitigate DHCP spoofing attacks. However, their approach and authentication

procedure did not specify any key exchange algorithm for encrypting subsequent communi-

cation. Moreover, certificate management practices were not implemented, such as certificate

revocation, validation, and renewal.
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Another new and recent approach was implemented by Microsoft for SharePoint server-to-

server authentication in a SharePoint farm. SharePoint administrator creates a certificate for

each SharePoint server, submits it to a third-party certificate authority to generate a signed

certificate, and then imports it back to the Windows Certificate Store on each SharePoint

server. Hence, whenever a SharePoint server attempts to claim information from its peer,

the sent request must be accompanied by the sender’s certificate to initiate an SSL handshake

and then encrypt further communication [42]. Unlike the prior approach, SSL handshake and

key-exchange algorithm are implemented, plus, all certificate management operations are con-

sidered and executed by a certificate authority. However, managing certificates for each Share-

Point server individually can become complex, especially in larger farms with multiple servers.

A different method involved Module-OT which is an HSM developed by the National Renew-

able Energy Laboratory (NREL) to secure communication between distributed energy resource

systems. Module-OT is one of the various HSMs developed by different vendors, where each

of which has its own specifications and features. Module-OT also complies with the (FIPS)

140-2 standard [18]. They tested their model by placing two HSMs to take control of data

encryption and decryption between a data generator and a data emulator using symmetric-key

cryptography, without performing authentication and SSL encryption [43].

2.4 Discussion

Based on studying current networking protocols and their security structures in table 2.1, and

investigating the existing solutions developed by academic researchers and industry, it is ev-

ident that no mechanism provides optimum security for confidential and authenticated com-

munication, and incorporating them for the goal of securing communication leads to security

holes. Plus, current solutions only apply to specific types of environments or servers, and do

not utilize all cryptographic operations for robust security.

Thus, a uniform security mechanism is required to be employed in intra-domain environments,

that integrates SSL in conjunction with all other networking protocols to secure web-based

and non-web-based communication. However, synthesizing SSL requires a numerous number
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of cryptographic keys and certificate management practices. The common approach to solve

the aforementioned case is the usage of Key Management Service (KMS), which is software

installed in servers or the cloud, that is responsible for helping organizations in managing

cryptographic keys and certificates securely. One example of a cloud-based KMS is Amazon’s

AWS KMS [44]. Amazon’s KMS makes it easier for organizations to generate, store, manage,

and distribute keys. Plus, it acts as a certificate authority to perform all certificate management

practices.

HSMs on the other hand are physical devices installed within organizations to perform equiv-

alent functions to the KMS systems. However, the main key differences between the two

include:

• Security: HSMs are highly secure devices as they conform to the FIPS 140-2 standard,

thus making them provide more reliable than their competitor. Whereas a vulnerability

in Amazon’s KMS has been exploited recently by Thai Duong [45] that caused client’s

private information to get leaked, among other risks.

• Flexibility: KMS systems are usually easy to be integrated with software programs and

services in servers. However, HSMs require vendor-specific libraries to operate. This

greatly reduces the flexibility when an HSM is substituted with another from a different

vendor.

• Cost: KMS systems are pay-as-you-go services, and are often proving to be a cost-

effective alternative compared to the deployment of HSMs, which typically demand up-

front cost or long-term commitments.

Compared to software-based alternatives, the verifiable security provided by HSMs induces the

need to employ HSM services in intra-domain environments. However, their vendor-specific

libraries can make deployment burdensome when switching between HSMs. To overcome the

associated flexibility and cost issues with HSMs, we propose developing the SSL Everywhere

architecture.

SSL Everywhere is a Software as a Service (SaaS) architecture designed to revolutionize the
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way organizations implement secure communication within intra-domain environments, as de-

picted in Figure 2.6. This innovative approach combines the power of HSMs with the flexibil-

ity and scalability of cloud-based services. SSL Everywhere provides a standardized way to

manage and secure intra-domain communication within organizations. By integrating industry-

standard cryptographic protocols, including SSL, and leveraging the capabilities of HSMs, SSL

Everywhere ensures the confidentiality, integrity, and authenticity of data exchanged between

endpoints. Figure 2.6 shows the SSL Everywhere service model, where two domains in two

autonomous systems within the same organization, Domain A and Domain B, are subscribed

to the SSL Everywhere services, both utilize the SSL Everywhere service and have access to a

suite of security and SSL certificate management tools.

Moreover, this architecture offers a zero-touch deployment model, reducing the time and effort

required for implementation, and allowing organizations to seamlessly integrate SSL Every-

where into their existing infrastructures with minimal configuration. SSL Everywhere is ded-

icated to securely generating, storing, and managing cryptographic keys and certificates, as it

offers standardized key management using a user-friendly command-line tool. A more detailed

explanation of the architecture is explained in Chapter 3.
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Figure 2.6: SSL Everywhere Service Model



Chapter 3

SSL Everywhere Architecture

This chapter proposes a comprehensive architecture that provides seamless integration of var-

ious HSMs that collectively fortify the confidentiality, integrity, and availability of sensitive

data transmitted across intra-domain networks. The purpose of the SSL Everywhere archi-

tecture is to enhance the security and performance of communication systems that utilize the

SSL protocol within intra-domain environments by providing various security services based

on HSMs’ capabilities. Some of the key security services offered by SSL Everywhere include:

1. Secure Storage Initialization.

2. Key-Pair Generation

3. Digital Certificate Generation

4. Data Encryption/Decryption

5. Access Control and Authorization

By utilizing HSMs capabilities that employ advanced encryption algorithms, secure key and

digital certificate management practices, stringent access control, and providing unified access

to their services, SSL Everywhere helps protect intra-domain environments from unauthorized

access, manipulation, and interception.

26
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3.1 General Architecture

Starting with the SSL Everywhere general architecture, shown in Figure 3.1, it is a 3-layer

architecture designed to facilitate unified and uniform access from software applications to

various HSMs.

At its foundation, the architecture features the physical layer, which includes specialized HSMs

from multiple vendors, where communication between the HSMs and the upper layers is facil-

itated by the Adaptive Driver Communication Protocol (ADCP). These HSMs provide secure

storage for cryptographic keys and certificates, perform cryptographic operations, and enforce

robust security measures.

The middle layer of the architecture is the management layer, which consists of several ser-

vice functions and the Hardware Abstraction Layer (HAL). The service functions encompass

multiple managers, each dedicated to a specific cryptographic operation or the management of

the SSL Everywhere. The HAL acts as an interface between the physical layer and the higher-

level components to facilitate unified communication by abstracting the differences between

the underlying HSMs.

Finally, the top layer is the application layer, where SSL protocol and applications reside.

This layer leverages the underlying hardware and software components through an Application

Programming Interface (API), to establish secure and reliable communication channels.

The significance of SSL Everywhere is that the management layer will provide a uniform

view of HSM services so that API functions can be implemented independently of the specific

hardware of the vendor. The APIs set uniform interaction methods that act as the main gateway

to expose bidirectional REST protocols to be used for the applications. These applications

are not required to run in the same domain space or even on the same machine. Another

significant aspect of this prototype design is that it is not tied to one HSM. This provides

greater flexibility in constructing adaptive KMS. The key element of the management layer is

to abstract the complexity of the HSMs’ configurations into a set of features that can be invoked

by the applications via uniform APIs.
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Figure 3.1: SSL Everywhere High-Level Architecture

3.2 Low-Level Architecture

Now that we have established an overview of the SSL Everywhere, the low-level architecture

of the SSL Everywhere, shown in Figure 3.2, offers an in-depth exploration of the internal

components and their intricate interactions within the system. This section provides a detailed

description of each layer, highlighting their specific functionalities and contributions to the

overall architecture.

3.2.1 SSL Everywhere Application Layer

Starting with the application layer, it is the uppermost layer that consists of software appli-

cations and user interfaces running on servers that utilize cryptographic services provided by

the HSMs through the SSL Everywhere architecture. The layer interacts with the management

layer through an API to provide access to different HSMs, enabling seamless access to the

various functionalities and capabilities of the underlying HSMs.
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Figure 3.2: SSL Everywhere Low-Level Architecture

3.2.2 SSL Everywhere API

To allow applications in the application layer to communicate with the management layer, vari-

ous frameworks can be employed to develop RESTful APIs, that follow the REST architecture

by using HTTP requests to communicate with resources identified by URLs, and exchange

information through the standard HTTP methods, including GET, POST, PUT, and DELETE.

Some of the most widely used and recognized frameworks include:

• Flask, developed in 2010, is a micro web-framework to create APIs using Python. It

only provides the core functionality that is necessary to build an API, leaving the rest of

the extra features to be added by the developers as required, making Flask a very simple

and easy-to-use API development tool. Additionally, whether building a basic applica-

tion or a full-featured API, Flask offers comprehensive documentation full of examples
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and implementation details. The challenge of using Flask as a micro-framework is that

developers have to take extra steps to secure the application. This can be a source of

concern if not properly managed, thus making it less suitable for large-scale applications

that require advanced functionalities.

• Django, debuted in 2005, is a full-featured Python framework. With more than 2500

packages included in its library, it prioritizes the security of applications by guarding

against various types of attacks. This reduces the burden for developers to configure

applications’ security by employing third-party extensions. Another advantage of us-

ing Django is the extensive amount of documentation and tutorials due to its prolonged

history of operation.

• FastAPI is a high-performance micro-web framework designed for building APIs with

Python. It was first released in 2018. It provides an easy-to-use and intuitive syntax

that simplifies the development process while ensuring optimal performance. FASTAPI

includes automatic generation of API documentation, a simplified user interface to test

the API, and data validation, among other features.

• Spring is one of the longest-standing Java-based API development frameworks. Ini-

tially released in 2002, it is widely adopted for developing enterprise-level applications,

including RESTful APIs. Over the years, Spring has evolved into a full-featured ecosys-

tem of libraries and extensions that can be used to develop a wide range of applications.

Its popularity and extensive documentation are a testament to its stability, robustness,

and flexibility, making it a go-to choice for developers in the Java ecosystem.

In Chapter 4, we will provide a comparison of the various API development tools that are

presented based on their performance. Based on the comparison results, a selected toll will be

identified for integration with the SSL Everywhere.
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3.2.3 SSL Everywhere Management Layer

Now, as we shift our focus from the API, we’ll navigate towards the management layer, where

SSL Everywhere’s centralized control and monitoring mechanisms come into play. Figure

3.2 shows the detailed architecture of the management layer, which exposes the higher-level

APIs to communicate with the underlying HSMs. It is primarily made up of multiple service

managers who can be classified as follows:

Base Service Functions

The base service functions are employed to provide the primary services required to function

the SSL Everywhere properly. Base service functions include:

• Topology Manager: Stores information about the HSMs and organizes HSMs with their

physical and logical connections in a hierarchical structure. The topology manager mon-

itors newly added and removed HSMs to construct this structure dynamically.

• Statistics Manager: Collects statistical information from the underlying HSMs, such as

request counts and error rates. It stores and maintains this information to comprehen-

sively generate reports based on the collected statistics.

• Flow Manager: Creates policy sets that guide the request routing process. These policy

sets define the rules and criteria for determining the appropriate destination for each

incoming request. By configuring these policies, the flow manager guides the HAL,

enabling it to determine the specific HSM to which a request should be sent. These

policies can consider various factors, such as security requirements, load balancing, the

availability of HSM resources, and other relevant considerations. It also directs requests

to the appropriate HSM based on pre-defined flow policies.

• Host Manager: Manages and stores connected end-point hosts’ information. It main-

tains a repository that stores crucial details about each host, including their MAC ad-

dresses and IP addresses.

• HSM Manager: Manages and stores the underlying HSMs’ information. It maintains a
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centralized repository of HSM-related data, including their statuses and configurations.

This information includes details about the available HSMs, their connectivity, opera-

tional status, and any relevant configuration settings.

• Security Manager: Analyzes the HSMs’ states and incoming data to identify anoma-

lies. Machine-learning-based anomaly detection systems can be employed in the security

manager to continuously scan incoming requests and detect threats.

• Event Manager: Collaborates closely with the security manager. Its primary role is to

monitor critical events within the HSMs. By continuously monitoring various aspects of

the system, such as performance, and security indicators, in any critical event, such as a

security breach or system failure, the Event Manager generates reports and alerts.

• Database Manager: Manages and backups data storage, and generates statistics about

saved data, such as certificates and audit logs.

Operation Service Functions

On the other hand, the operation service functions contain managers oriented to perform spe-

cific cryptographic and HSM-related tasks, such as:

• Authorization Manager: Performs host authentication, and authorization, and deter-

mines which hosts can access HSM resources. It is responsible for validating the iden-

tity and credentials of connecting hosts and determining their level of access to HSM

resources. By enforcing access control policies and rules, the Authorization Manager

ensures that only authorized hosts can utilize the HSM resources and perform crypto-

graphic operations.

• Cryptography Manager: Performs cryptographic operations, such as encryption, and

decryption, and secure storage initialization within the HSMs to store cryptographic ob-

jects.

• Keys Manager: Handles key generation and retrieves cryptographic keys for hosts, for

encryption and decryption processes.
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Figure 3.3: Hardware Abstraction Layer

• Certificate Manager: Manages the validation and revocation of digital certificates used

for secure communication and authentication purposes. It maintains a repository of

trusted root certificates and intermediate certificates, enabling the validation of certifi-

cates within the system. The Certificate Manager also handles the revocation of certifi-

cates in case of compromised or expired certificates
Hardware Abstraction Layer

Moving beyond the management layer, we’ll now delve into the hardware abstraction layer.

The HAL, shown in figure 3.3, is the heart of the SSL Everywhere. It enables software ap-

plications to communicate with different HSMs, by abstracting the low-level details of the

underlying HSMs. It contains a Service Manager, which is responsible for receiving a request

from the controller managers and translating it into a feature request based on a predefined pol-

icy set, then forwarding it to the Driver Manager, which has a registry that maps each feature

with the appropriate HSM’s driver command that handles the request.
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3.2.4 Adaptive Driver Communication Protocol (ADCP)

The aforementioned SSL Everywhere components need to communicate with each other, this

communication is facilitated using the ADCP. The ADCP is a JSON-like messaging proto-

col that forms the backbone of the communication infrastructure within the SSL Everywhere

by managing communication between the applications and the HSMs’ drivers. It provides a

standard format for requests and responses to ensure consistent communication among various

HSMs.

3.2.5 SSL Everywhere Physical Layer

The physical layer of the SSL Everywhere architecture encompasses the hardware compo-

nents and infrastructure necessary for the secure operation of the system. This layer plays

a critical role in ensuring the confidentiality, integrity, and availability of sensitive data and

cryptographic material. It encompasses the following components:

• HSMs: The physical layer includes tamper-resistant HSMs that provide cryptographic

services. These HSMs are designed to safeguard sensitive data and cryptographic keys.

• Databases: For supplementary storage capacity, the physical layer may include databases

that store cryptographic elements, such as keys, certificates, and audit logs. These

databases can be located either on the same server as the HSMs or on a separate server.

• Simulators: In addition to physical HSMs, the physical layer may also include soft-

ware HSM simulators, also known as virtual HSM VHSM. These simulators, such as

SoftHSM [46], replicate the functionalities of physical HSMs in a software-based en-

vironment. They are often used as a playground for training, development, and testing

purposes, providing a cost-effective and flexible alternative to physical HSMs.

Simulator

It is important to note that the SSL Everywhere architecture has been developed and thoroughly

tested on the SoftHSM simulator environment. SoftHSM provides a software-based emulation
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of an HSM and offers a controlled environment for cryptographic operations and secure stor-

age. Throughout this research, the SoftHSM simulator has served as a reliable and flexible tool

for assessing the architecture’s performance and providing cryptographic services to clients.

Database

The SSL Everywhere database serves as the backbone of the architecture, storing and man-

aging critical information and operational data. Within this robust database, three key tables

play pivotal roles in tracking, recording, and organizing essential components and transactions.

These tables include the “HSMs” table, the “Hosts” table, and the “Certificates” table. Each

table serves a unique purpose, collectively contributing to the seamless operation and security

of the SSL Everywhere architecture.

The “HSMs” table in Table 3.1 serves as a comprehensive repository of HSMs information,

providing essential insights into the management and performance of these components. Each

record in the table is uniquely identified by an “ID” assigned to every HSM instance, facilitat-

ing efficient data retrieval and management. Additionally, the “Name” column allows users to

assign human-readable identifiers to each HSM, aiding in easy reference and recognition.

One important aspect of HSM operation is captured by the “Initialized” column, which indi-

cates whether an HSM has been successfully initialized and configured for use Furthermore,

the “Processed Requests” column quantifies the number of cryptographic requests or opera-

tions carried out by each HSM since its initialization. This metric not only helps in monitoring

the workload of individual HSMs but also aids in resource allocation and optimization.

Lastly, the “Status” column provides real-time information regarding the operational status of

each HSM, with possible values including “Active”, “Offline”, or “Error.” The status track-

ing feature offers valuable data for proactive maintenance and troubleshooting, ensuring the

continued reliability and security of the HSM infrastructure.

Moving on, the “Hosts” table in Table 3.2 within the SSL Everywhere database serves as

a repository of information regarding the networked hosts that interact with the architecture.

With well-defined columns such as “ID”, “MAC Address”, “IP Address”, “Requests Count”,
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Table 3.1: HSMs Information Table
Column Type Description

ID Int Unique HSM identifier for each record in the dataset

Name String
A user-defined string that serves as a human-readable identifier

for each HSM.

Initialized Boolean
Indicates whether the HSM has been successfully initialized and

configured for use.

Processed Requests Int
Represents the number of cryptographic requests or operations

processed by each HSM since its initialization.

Status Boolean Reflects the operational status of each HSM (Active/Offline/Error).

Table 3.2: Hosts Information Table
Column Type Description

ID Int Unique identifier for each host in the table.

MAC Address String The unique MAC address of the host.

IP Address String The IP address assigned to the host.

Requests Count Int Represents the total count of requests made by the host.

Admin Email String
The email address of the administrator or contact person responsible for

the host’s management and maintenance.

and “Admin Email”, this table efficiently captures and manages key details about each host.

The “ID” column provides a unique identifier for every host recorded in the table.

Meanwhile, the “MAC Address” and “IP Address” columns store the host’s unique hardware

and network addresses, facilitating precise identification and routing. The “Requests Count”

column keeps track of the total number of requests initiated by each host, providing valuable

insights into their communication patterns. Lastly, the “Admin Email” column captures the

email address of the individual responsible for managing and maintaining the host, this infor-

mation is also used when creating the digital certificate for the user.
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Table 3.3: Certificates Information Table
Column Type Description

ID Int Unique identifier for each certificate in the table.

MAC Address String
The MAC address associated with the host for which the certificate is

issued.

Certificate BLOB The binary data representing the actual certificate issued to the host.

Certificate Chain BLOB
The binary data representing the certificate chain associated with

the certificate.

Further, Table 3.3 shows the “Certificates” table within the SSL Everywhere database is in-

volved in securely managing and storing cryptographic certificates used in the secure commu-

nication architecture. The “ID” column serves as a unique identifier for each certificate record.

The “MAC Address” column associates each certificate with the specific host for which it is

issued, creating a direct link between certificates and their respective hosts. The “Certificate”

column stores the actual certificate in binary form. Simultaneously, the “Certificate Chain”

column captures the binary data representing the associated certificate chain, this is crucial for

validating the authenticity of the certificate. This table’s particular organization of certificate-

related information ensures the reliable operation of SSL Everywhere.



Chapter 4

SSL Everywhere Design Process &

Methodology

In the SSL Everywhere design process, we employ a bottom-up approach that progresses from

the physical layer to the application layer. This sequential methodology allows us to establish

a solid foundation by addressing the fundamental aspects of the system architecture before

proceeding to higher-level functionalities. By starting at the physical layer, we ensure that

HSMs’ services are well-defined and expressed in command lines. This fosters the construction

of a standard JSON message to be applied to all security services provided by SSL Everywhere.

Once we ensure that the underlying infrastructure, including the HSMs, secure storage, and

communication protocols, is well-defined and effectively integrated, we proceed to construct

the HAL and its components.

Subsequently, we proceed to progressively expand upon this groundwork, methodically inte-

grating the essential elements and capabilities of the application and management layers.

4.1 ADCP Standard Message

In what follows, we start by describing the JSON-based standard message format that serves

as a robust communication template for interacting with the HSMs, starting from the physical

38
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layer. This standardized format shown in Figure 4.1 provides a structured and comprehensive

approach to exchanging information and instructions, ensuring consistent integration across

diverse systems. By adhering to this format, organizations can establish a common language

for HSM interactions, facilitating secure and efficient communication.

The process behind designing the standard JSON message involved studying the documenta-

tion and services of the available HSMs. By thoroughly examining the capabilities and specifi-

cations of various HSMs, we were able to design a format that captures the essential parameters

and functionalities required for proper communication with HSMs, where each specific com-

mand corresponds to a JSON message.

In this standard message format, the message is structured into two main sections: the header

and the body. The header section encompasses essential information that is consistently present

in all messages, irrespective of their specific purpose. It serves as a meta-information container,

providing crucial context and facilitating the proper routing and interpretation of the message.

The header includes parameters such as message direction which denotes if this message is a

request for a service or a response to the client. This parameter can also hold a value to indicate

that a message is for internal purposes, such as messages between managers for information

exchange. Another parameter is the ”message id”, which assigns a unique serial number to

each message, starting from “1” and incrementing with each new message. This enables the

tracking and referencing of messages within the system. The ”message type” parameter in-

dicates the specific HSM operation to be performed. The ”source mac address” parameter

represents the MAC address of the device or entity sending the message, enabling internal ar-

chitecture usage and the association of cryptographic elements with their corresponding hosts.

Similarly, the ”source ip address” parameter denotes the IP address of the source device, pro-

viding additional internal architecture usage information. Further, the ”timestamp” parameter

in the header serves to record the time at which the message is generated, providing a temporal

reference for tracking and synchronization purposes within the architecture.

Additionally, the header contains the ”dest hsm module” parameter, which specifies the desti-

nation HSM module where the command should be executed. It identifies the path to the HSM



40 Chapter 4. SSL Everywhere Design Process & Methodology

module library file responsible for handling the requested operation. These header parameters

collectively establish the necessary foundation for message routing and proper interaction with

the HSM. By incorporating these standardized header parameters, the message format ensures

consistency, interoperability, and efficient processing across different HSM-related operations

and systems. The body section of the message format, on the other hand, encapsulates the

specific content and parameters related to the intended operation or task. It holds information

that is specific to the particular message and varies based on the desired functionality.

Within the body section, additional parameters and details that are specific to the operation

defined in the header are included. For instance, the ”session label” parameter represents the

label or name assigned to the secure session being initialized, or an identification on where to

store generated cryptographic elements. This allows for proper identification and management

of different sessions within the HSM.

The ”credentials” object contains the ”admin pin” and ”user pin” parameters. These cre-

dentials are utilized for administrative and user-level operations, granting access to the to-

ken’s cryptographic functions and enabling authentication and authorization. Furthermore, the

”key info” object encompasses parameters related to the generation of cryptographic key pairs.

The ”type” parameter specifies the type of cryptographic algorithm to be used, such as RSA,

AES, or EC. The ”length” parameter denotes the desired length of the generated key. Ad-

ditionally, the ”label” parameter assigns a unique name or label to the generated key pair,

facilitating identification and management. Finally, the ”id” parameter provides an id number

for the generated key pair, enabling easy referencing and retrieval when needed.

Moreover, for X.509 certificate generation requests, the ”csr details” component serves as a

repository for storing critical CSR details. These details encompass two key attributes: ”csr”

which encapsulates the CSR data received from the client for signing, and ”csr file” which

specifies the file path where the CSR is to be saved within the SSL Everywhere server. This

streamlined approach of saving the CSR file before proceeding with the signing process sig-

nificantly streamlines the certificate generation process. Along with the ”csr details”, the

second component, ”cert details” is also involved in the certificate generation security ser-
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vice. ”cert details” namely includes two important parameters. First is the hash algorithm

which denotes the hashing algorithm to be used for signing the certificate. If not specified by

the user, the hash algorithm is ”sha256” by default. The second is ”days” which specifies the

certificate validity in days, which is hard-coded ”365” days and can be changed by the SSL

Everywhere administrators.

By utilizing the standard ADCP message as the foundational means of communication within

the SSL Everywhere framework, security service requests can be transmitted across the infras-

tructure with optimal efficiency.

4.2 Security Services

The ADCP message plays a crucial role in providing various security services to clients. SSL

Everywhere security services provide a wide range of cryptographic operations and HSM-

related functions. Those services play a pivotal role in safeguarding sensitive information and

ensuring the integrity and confidentiality of cryptographic assets. With SSL Everywhere’s se-

curity service capabilities, they provide a solid foundation for implementing secure systems

and maintaining the confidentiality and integrity of exchanged data in intra-domain environ-

ments. These services include, but are not limited to:

4.2.1 Secure Storage Initialization:

The first security service is described by the JSON message shown in Figure 4.2 that facilitates

secure storage initialization in an HSM. Initializing secure storage is a critical initial step in

leveraging HSMs, as it creates a secure and controlled environment within the HSM for storing

and managing cryptographic elements, such as keys and certificates.

The header section contains information such as the message ID, message type (initsession),

source MAC address, source IP address, and destination HSM module. The body section

includes the session label, which is set to (SecureSession1) for storage identification and man-

agement purposes. The credentials object includes the admin PIN and user PIN. The “ad-

min pin” provides administrative privileges for managing the token and performing privileged
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{

"header":{

"message_direction": "request/response",

"message_id": "msg_id",

"message_type": "requested_operation",

"source_mac_address": "src_mac",

"source_ip_address": "src_ip",

"timestamp": "2023-11-14T16:00:36.937948",

"dest_hsm_module": "hsm_destination",

},

"body":{

"session_label": "session_identifier",

"credentials":{

"admin_pin": "admin_access_code",

"user_pin": "user_access_code"

},

"key_info":{

"type": "generated_key_type",

"length": "generated_key_length",

"label": "generated_key_label",

"id": "generated_key_id"

},

"csr_details"{

"csr": "csr_data",

"csr_file": "csr_path"

},

"cert_details": {

"hash_algorithm": "signing_hash_algorithm",

"days": "certificate_validity"

}

}

}

Figure 4.1: ADCP Standard JSON Message



4.2. Security Services 43

operations. It is typically used by the token’s administrator or security officer. It allows oper-

ations such as initializing the token, creating or deleting security objects, and changing PINs.

However, “user pin” is associated with a specific user or application that accesses the token.

It provides user-level access to the token and allows performing operations that do not require

administrative privileges. It is used for authentication and to access the protected objects stored

in the token, such as private keys or certificates.

Noting that the parameters of the “key info” object are kept null, as these parameters would

need to be populated with appropriate values according to the “initsession” request.

Once secure storage has been created, the HSM proceeds to generate a Secure Storage Key

(SSK). The SSK is a cryptographic key that is stored securely within the HSM and used to

encrypt the cryptographic objects that are generated and stored within the session. The length

of the SSK and the encryption algorithm employed depend on the specifications of the HSM

being used. For example, HSMs such as ENTRUST’s nShield Connect HSM and Thales’ Luna

HSMs utilize a 256-bit SSK, and employ the Advanced Encryption Standard (AES) algorithm

for encrypting the generated objects prior to storing them in the secure storage [47],[48]. The

SSK provides an additional layer of security by ensuring that the stored cryptographic objects

are protected and can only be accessed and decrypted by authorized entities with the proper

key management and authentication mechanisms in place.

Aside from encrypting the cryptographic objects stored within the secure storage, HSMs pro-

vide a tamper-resistance mechanism that acts as a crucial line of defense against unauthorized

physical access and tampering attempts. This mechanism ensures the integrity and confiden-

tiality of sensitive cryptographic material and prevents unauthorized manipulation or extraction

of key information. By integrating a range of internal sensors, HSMs are designed to detect

and defend against attacks involving drilling, extreme temperatures, as well as low and high-

voltage manipulations [49]. These sensors continuously monitor the physical environment of

the HSM, allowing it to halt all its procedures, record events to the log, and wait to be restarted

as a response to any suspicious activity or tampering attempts [50].

To achieve the intended functionality, the message traverses multiple layers of the architecture.
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The application layer constructs the message with the required parameters (). The management

layer adds additional information, such as source and destination details, to facilitate proper

routing and tracking. The cryptography manager ensures the secure handling of cryptographic

operations, while the HSM module executes the requested command within the specified mod-

ule.

{

"header": {

"message_direction": "request",

"message_id": "1",

"message_type": "initsession",

"source_mac_address": "00:11:22:33:44:55",

"source_ip_address": "1.2.3.4",

"timestamp": "2023-12-13T10:00:00.00",

"dest_hsm_module": "nshieldhsm.so"

},

"body": {

"session_label": "SecureSession1",

"credentials": {

"admin_pin": "admin123",

"user_pin": "user456"

},

"key_info": null

}

}

Figure 4.2: Secure Storage Initialization JSON Message

4.2.2 Key-Pair Generation:

Another provided security service is the key pair generation message. It is designed to generate

a key pair within the specified token for cryptographic operations. It includes various parame-

ters to provide necessary information for the operation. As with every message, the header of

the key pair generation message shown in Figure 4.3 contains all the essential information that

remains consistent. However, the body of the message contains specific parameters related to

the key pair generation operation. These parameters include the ”session label” to identify the

session in which the key pair should be generated and the ”user pin”, defined in the credentials
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{

"header":{

"message_direction": "request",

"message_id": "1",

"message_type": "keypairgen",

"source_mac_address": "00:11:22:33:44:55",

"source_ip_address": "1.2.3.4",

"timestamp": "2023-12-13T10:00:00.00,

"dest_hsm_module": "nshieldhsm.so",

},

"body":{

"session_label": "SecureSession1",

"credentials": {

"user_pin": "user456",

},

"key_info": {

"type": "rsa",

"length": "2048",

"label": "KeyPair1",

"id": "9999"

}

}

}

Figure 4.3: Key-Pair Generation JSON Message

object, that is required for user-level operations and token access.

The ”key info” object within the body encapsulates details required details about the key pair

to be generated. It specifies the ”type” of the cryptographic algorithm, such as ”RSA” or

”AES”, and the desired ”length” of the key. The ”label” parameter assigns a name or label

to the generated key pair, while the ”id” parameter provides an identifier for reference and

retrieval purposes.

By utilizing this message structure, the key pair generation operation can be accurately defined

and executed within the hardware abstraction layer, facilitating the generation and storage of

cryptographic key pairs for subsequent cryptographic operations.

After defining security service messages, requests can be transmitted by the HAL. The HAL
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leverages the information provided in the security service messages to direct requests to the

appropriate HSMs based on the predefined policy sets.

4.2.3 X.509 Certificate Generation

Moving on to one of the most important security services, X.509 certificate generation requests

are a fundamental requirement for numerous cryptographic operations, holding a prominent

role within SSL Everywhere to ensure secure communication between clients. Similar to pre-

vious messages, the header section of the certificate generation message shown in Figure 4.4

contains consistent and essential information. However, the body of the message holds specific

parameters tailored to the certificate generation process.

Within the body section, and similar to the previous message, session label is also included as

an identifier for the session within which the CSR to be signed. Plus, the ”user pin” is also

defined within the credentials object, to authorize user-level operations and access to the token.

Moving on to the specific parameters for the certificate generation request, the csr details ob-

ject encapsulates the CSR received from the client in a text form to be signed with the root

CA certificate, and the csr file that denotes the path in the server where the CSR is saved. As

shown in the message below, the csr file is saved based on the client’s MAC address for better

organization and identification. Moreover, the cert details object holds information related to

the X.509 certificate to be generated. First, hash algorithm defines the hashing algorithm to

be signed the certificate after encrypting it with the private key of the root CA, as mentioned

earlier, ”sha256” is the default algorithm if not specified by the user. Second, comes the

”days” parameter that defines the certificate validity in days. The ”365” value indicates that

this certificate is valid for 365 days from the day the certificate is generated. Noting that, this

parameter is only to be specified by the SSL Everywhere administrators.

4.3 Hardware Abstraction Layer Design

Transitioning from the overview of security services, the critical path leads to the Hardware

Abstraction Layer. The design of the HAL plays a crucial role in ensuring seamless communi-
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{

"header": {

"message_direction": "request",

"message_id": "1",

"message_type": "signcsr",

"source_mac_address": "00:11:22:33:44:55",

"source_ip_address": "1.2.3.4",

"timestamp": "2023-12-13T10:00:00.00,

"dest_hsm_module": "nshieldhsm.so",

},

"body": {

"session_label": "secure_session",

"credentials": {

"user_pin": "user456"

},

"

csr_details": {

"csr": "-----BEGIN CERTIFICATE REQUEST-----

"CSR_Data"

-----END CERTIFICATE REQUEST-----",

"csr_file": "/ssleverywhere/csr/client_MAC.csr.pem"

},

"cert_details": {

"hash_algorithm": "sha256",

"days": "365"

}

}

}

Figure 4.4: Certificate Generation JSON Message

cation and interoperability between the software and hardware components of the architecture.

The HAL is designed to include two crucial components: the Service Manager and the Driver

Manager. The Service Manager acts as an intermediary between the controller managers and

the underlying hardware, while the Driver Manager handles the execution of hardware-specific

commands.

In the operational workflow, the HAL proactively communicates with the Flow Manager to

obtain the policy set. This step is crucial to ensure that request handling and management are

based on predefined policies. The policy set provides instructions on various aspects, such as



48 Chapter 4. SSL Everywhere Design Process & Methodology

security measures, access control, error handling, and resource utilization, based on analyzing

the security requirements, capabilities, and the current utilization of each HSM. Additionally,

the policy set may include guidelines for access control, specifying which entities or users have

permission to perform certain operations on the HSMs.

When a request is received from the controller managers, the Service Manager takes on the

responsibility of translating the request into a feature request. This translation process entails

applying predefined policies established by the managers to ensure the inclusion of the appro-

priate ”dest hsm module” parameter in the message. By adhering to these policies, the Service

Manager guarantees that the feature request contains the necessary information to route it to

the correct HSM.

The Driver Manager plays a vital role in the HAL architecture by maintaining a registry that

maps each feature request to the appropriate HSM’s command and driver. This registry serves

as a lookup table, allowing the Driver Manager to identify the specific hardware command

and corresponding driver that can handle the requested feature. By leveraging this mapping,

the Driver Manager ensures that the feature request is directed to the appropriate hardware

component for execution.

4.4 Policy Set Design

The effective operation of the HAL depends on a well-structured policy set. The policy set

design is a critical aspect of the SSL Everywhere architecture, as it determines the proper

allocation of requests to the available HSMs based on predefined policies. The policy set is

designed to consider various factors, including the capabilities, algorithms, hash functions, and

utilization of each HSM, this ensures efficient resource utilization and optimal performance.

For example, the policy set shown in Figure 4.5 includes the ”hsm” parameter which identifies

the specific HSM to which the policy applies. For each HSM, the ”capabilities” parameter

specifies the capabilities of the HSM, indicating the operations or functions it can perform. For

example, the policy set may specify that HSM1 is capable of key pair generation, certificate
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generation, and encryption, while HSM2 can only perform key pair generation and encryption.

Plus, the ”algorithms” parameter lists the supported cryptographic algorithms for the specified

HSM. It includes algorithms such as RSA, ECC, AES, and RC4, which can be used for various

cryptographic operations. The ”hash funcs” parameter defines the supported hash functions

for the HSM. Hash functions like MD5, SHA1, SHA256, and SHA512 are commonly used for

data integrity and verification purposes.

Finally, the ”utilization” parameter reflects the current utilization level of the HSM. It can be

categorized into different levels, such as low, medium, or high, based on factors like the work-

load, performance, and resource availability of the HSM, enabling efficient decision-making in

request routing.

By designing a comprehensive and well-defined policy set, the SSL Everywhere architecture

can effectively optimize resource allocation, ensure compatibility with cryptographic opera-

tions, and provide secure and efficient communication within intra-domain environments.

{

policies: [

{

"hsm": "HSM1",

"capabilities": ["initsession", "keypairgen",

"certificate_gen", "encryption"],

"algorithms": ["rsa","ecc"],

"hash_funcs": ["md5","sha1","sha256"],

"utilization":["low","med","high"],

},

{

"hsm": "HSM2",

"capabilities": ["initsession", "keypairgen", "encryption"],

"algorithms": ["rsa","aes","rc4"],

"hash_funcs": ["md5","sha256","sha512"],

"utilization": ["low","med","high"],

}

]

}

Figure 4.5: SSL Everywhere Policy Set
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4.5 API Design

Going upward in the architecture, the SSL Everywhere API design process was complemented

by conducting a comparative analysis of the API development tools outlined in Section 3.2.2.

The primary objective of this assessment was to pinpoint and choose the optimal tool for con-

structing an API that aligns with the architecture’s requirements. Our evaluation focused on

two key aspects of API performance: the successful responses per second rate when increasing

the number of simultaneous requests, and the latency associated with each individual request.

Figure 4.6 presents a performance comparison of the aforementioned tools based on the number

of responses per second that each framework can handle as the number of concurrent users

increases from 0 to 40. From the results, Django demonstrates the highest responses per second

rate across the board. However, FastAPI preserves a consistent responses per second rate

suggesting a robust performance under concurrent user load. Conversely, the Spring and Flask

frameworks exhibit fluctuations and fail to maintain a consistent rate of responses per second.

Figure 4.6: Responses/Second Comparison Results

Further, the latency comparison shown in Figure 4.7 depicts the latency, measured in millisec-

onds as the number of concurrent users increases from 0 to 40. As the user load rises, all
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frameworks exhibit an increase in latency. FastAPI shows the lowest increase, suggesting it

handles additional load with minimal latency impact. Flask and Django demonstrate moderate

latency growth, with Django slightly outpacing Flask at higher user counts. Spring, however,

experiences the steepest rise in latency, indicating it may face challenges maintaining low la-

tency under heavy user load. This data is crucial for understanding how each framework might

affect user experience in high-traffic scenarios.

Figure 4.7: Latency Comparison Results

After evaluating the performance of various web frameworks, we have chosen FastAPI for

its impressive balance of high responses per second and low latency. FastAPI’s performance

metrics indicate that it can handle a significant number of requests with minimal delay, which

is essential for ensuring a smooth user experience. Prioritizing lower latency is crucial for our

application, as it directly impacts the responsiveness and efficiency of the service.

4.6 Command-Line Tool Design

After building each of the SSL Everywhere components, the final step is to build the command-

line tools that will be utilized in the software applications. The ”ssleverywhere” command-line

tool serves as a versatile interface for interacting with the SSL Everywhere architecture from
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the terminal. It offers various commands to initiate secure sessions, generate certificates, and

perform essential cryptographic operations. The design of this tool prioritizes user-friendliness,

enabling users to effortlessly harness the capabilities of the SSL Everywhere architecture.

Once installed and configured, the ”ssleverywhere” tool generates several folders within the

system, namely ”private”, ”csr”, and ”certs”. Within these folders, specific functionalities

are organized. The ”private” folder serves as the repository for server key pairs. The ”csr”

folder is designated for CSRs, to be sent to the SSL Everywhere, signed, and create X.509

certificates. Finally, the ”certs” folder stores the issued certificates obtained after successful

CSR submissions.

The functionality of ”ssleverywhere” depends on the parameters provided. The ”sslevery-

where” tool accepts multiple parameters, each serving a specific purpose and contributing to

the customization of commands. For example, the ’-gen cert’ command is responsible for cre-

ating an X.509 certificate and saving it in the ”certs” folder. The process starts by providing

the following parameters:

• -name: Specifies the name associated with the certificate, this name can either be man-

ually entered each time the ”-gen cert” command is executed or can be modified by

administrators to remain consistent for repeated usage of the command.

• -default: An option that can be used with the ”-gen cert” command to indicate default

certificate generation settings. Default parameters include key type set to RSA, key length

set to 2048, encryption set to AES, and hash set to SHA256.

• -manual: An option that can be used with the ”-gen cert” command to enable manual

configuration of certificate generation settings.

• -key type: Specifies the type of private key when manually configuring certificate gener-

ation settings.

• -key length: Specifies the desired length of the private key when manually configuring

certificate generation settings.
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• -encryption: Specifies the encryption method to be used for private keys when manually

configuring certificate generation settings.

• -hash: Specifies the hashing algorithm for cryptographic operations when manually con-

figuring certificate generation settings.

These parameters empower users to tailor their interactions with the SSL Everywhere architec-

ture, allowing for a flexible and efficient experience when utilizing the command-line tool.

Another command is ’-keypair gen’, this command is used to request SSL Everywhere to gen-

erate a cryptographic key pair and return it to the user. It accepts three parameters:

• -label: Specifies a label or name for the generated key pair, so the public key can be

saved in the SSL Everywhere database.

• -key type: Specifies the type of cryptographic key to be generated.

• -length: Specifies the desired length of the key.

With these parameters, users can customize the key pair generation process according to their

specific requirements.

To demonstrate a usage example of the ssleverywhere tool, the following scenario showcases

two machines on the same network utilizing ssleverywhere command to generate certificates,

and to form a secure communication channel.

The first step is to generate two certificates for the two machines. Machine A, which acts as the
server, initiates the process by running the ssleverywhere command. This command generates
a certificate with the name ”SE” using default settings.

$ ssleverywhere -gen_cert -name SE -default

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 5978 100 4965 100 1013 108k 22678 --:--:-- --:--:-- --:--:-- 132k

Once the certificate is generated, Machine A will receive its certificate. However, Machine
B, acting as the client, follows a specific configuration to generate its certificate. It runs the
following command:
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$ ssleverywhere -gen_cert -name CL -manual -key_type rsa -key_length 4096

-encryption des3 -hash sha512

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 7059 100 5331 100 1728 28048 9091 --:--:-- --:--:-- --:--:-- 37951

This command generates a certificate with the name ”CL” using manual configuration, spec-

ifying that: the key type is RSA, the key length is set to 4096 bits, encryption is performed

using the DES3 algorithm, and the hashing algorithm is SHA-512. Upon successful genera-

tion, Machine B receives its certificate.

Now, both Machine A and Machine B have their respective certificates issued by the SSL

Everywhere architecture, each with different configurations based on their specific needs. To

put these certificates to use, the next step is to establish a secure SSL communication channel

between the two machines.

Machine A takes on the role of the server in this setup. Using a socket programming Python

code, it initializes the code that is designed to listen for incoming connections on a predefined

port. As part of the setup process, Machine A loads its SSL certificate, private key, and root

CA certificate into the SSL/TLS server context. This server program then patiently awaits

incoming connection requests from clients.

Meanwhile, Machine B assumes the role of the client. It runs a client program that is respon-

sible for initiating a connection to Machine A’s server, targeting the specific port designated

for secure communication. Prior to establishing the connection, Machine B also loads its SSL

certificate, private key, and root CA certificate into its SSL/TLS client context.

With both programs running and configurations in place, the SSL handshake process, as cap-

tured by Wireshark and illustrated in Figure 4.8, unfolds when Machine B connects to Machine

A.

During this handshake, the messages enclosed within the yellow rectangle depict the SSL hand-

shake process, which involves mutual authentication. After the handshake is completed, both



4.6. Command-Line Tool Design 55

Figure 4.8: Captured Handshake Process

the client and server form a secure channel and can exchange application data securely, which

is encrypted and integrity-protected.



Chapter 5

Performance Evaluation

This chapter presents a performance assessment of an SSL Everywhere deployment in com-

parison to a conventional benchmarking tool that is typically employed for cryptographic op-

erations. Measurements will be based on certificate generation requests and several key per-

formance indicators. This assessment aims to provide information on the efficiency and effec-

tiveness of SSL Everywhere in the context of certificate generation.

We begin by presenting the experimental setup, which details the controlled environment in

which our tests were conducted, followed by an exploration of the evaluation metrics employed

to measure the architecture’s performance. Finally, we present the results of our experiments

and engage in a thorough discussion to draw meaningful conclusions and implications from our

findings. This analysis is intended to provide insight into the performance of SSL Everywhere

by answering these questions:

• How many requests can the SSL Everywhere API handle as demand increases? (Dis-

cussed in Section 5.3.1)

• How would the average response time be affected when the demand increases? (Dis-

cussed in Section 5.3.1)

• What is the average latency for each request when increasing the demand? (Discussed

56
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Table 5.1: Hardware Specifications

Specification Details

Operating System Ubuntu 22.04

Processor AMD Ryzen 7

Memory 16GB

Hard Drive 1TB SSD

in Section 5.3.1)

• How much will the architecture consume from the system’s and network’s resources to

fulfill an increasing number of requests? (Discussed in Section 5.3.2 & Section 5.3.3)

Answering those questions by generating statistics graphs for various metrics will provide a

glimpse into the architecture’s performance, and address its weaknesses, thus helping us iden-

tify areas that require improvement.

5.1 Experimental Setup

To start the analysis, it is imperative to understand the experimental setup used to evaluate the

SSL Everywhere architecture. This section outlines the configuration and environment used

to conduct the testing experiments, including the specifications of the utilized hardware to run

the architecture, the software used to perform comparisons and run the tests, and the testing

approaches.

5.1.1 Hardware Specifications

We start our exploration by delving into the hardware specifications used in our experiments.

In order to assess the efficiency of SSL Everywhere in handling certificate generation requests,

the architecture was deployed and run on a PC with the specifications mentioned in Table 5.1.

In the context of creating a controlled testing environment, it is important to note that the
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testing tool used to generate the certificate requests and perform the benchmarking was carried

out on a separate PC connected to the same network. This separation allowed us to maintain

a controlled and independent testing environment while keeping the focus on evaluating the

performance of SSL Everywhere on the specified PC as outlined in Table 5.1.

5.1.2 Software Tools

Continuing from this context, to perform a valid performance evaluation of the SSL Every-

where architecture, it has been put to a comparison with OpenSSL, a benchmarking tool for

performing cryptographic operations. OpenSSL is a comprehensive cryptographic software and

command-line tool that is well known for its open-source implementation of the TLS protocol.

Users and developers can use OpenSSL to perform a wide range of cryptographic functions,

such as generating key pairs, CSRs, and more [51]. Noting that, the sole usage of OpenSSL

in sensitive intra-domain environments to act as a root of trust for certificate signing and gen-

eration introduces security risks, as there have been 177 vulnerabilities reported in OpenSSL

through the period of 2002 till 2019 [52].

Performance analysis for SSL Everywhere architecture and OpenSSL tool was carried out us-

ing loadtest. Loadtest [53] is a command-line tool and Node.js module used for load testing and

benchmarking web applications and HTTP services. It allows the simulation of a high volume

of traffic to a web application to assess its performance, identify bottlenecks, and understand

how it handles various levels of load.

Loadtest operates in various modes, such as by specifying the requested Requests-Per-Second

(RPS), the total number of requests to be processed, the total time to send as many requests as

the API can handle, or the number of concurrent users. In addition, it provides detailed metrics

and reporting, including RPS, mean latency, and error rates. Figure 5.1 below shows a template

of a loadtest command along with the associated metric results.
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\$ loadtest -n <requests> -c <concurrency> http://<API_URL>

Requests: <#_Requests>, requests per second: <RPS>, mean latency: <Latency>ms

Target URL: http://<API_URL>

Max time (s): <max_time_seconds>

Concurrent clients: <concurrent_clients>

Agent: <your_agent_name>

Completed requests: <completed_requests>

Total errors: <total_errors>

Total time: <total_time_seconds>

Mean latency: <mean_latency> ms

Effective rps: <effective_requests_per_second>

Percentage of requests served within a certain time

50% <50th_percentile_latency> ms

90% <90th_percentile_latency> ms

95% <95th_percentile_latency> ms

99% <99th_percentile_latency> ms

100% <longest_request_latency> (longest request)

Figure 5.1: Loadtest Tool Output

Additional tools like the top (table of processes) and nload command-line tools were employed

to monitor performance metrics beyond what loadtest offers.

The top command provides real-time insight into active processes within an operating system,

presenting a summarized system information view that includes resource utilization data, such

as CPU and memory usage [54].

The nload tool is specifically designed for real-time network traffic and bandwidth monitor-

ing. It facilitates the tracking of incoming and outgoing data flows through statistical data and

graphical representations, offering comprehensive insights, including the total volume of data

transferred and peak network utilization [55].

5.1.3 Testing Scenarios

In the pursuit of precise experimentation, and to reduce interference, a different PC was used

to carry out all test scenarios using loadtest. These scenarios mainly involved varying two
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parameters, which are:

1. Concurrent Users: It refers to the number of virtual or simulated users that are actively

making requests to the target application or API at the same time. These virtual users act

as if they were real users interacting with the system, generating concurrent traffic.

2. Number of Requests: It indicates the total number of HTTP requests that will be gen-

erated and sent to the API during the load testing session. This metric quantifies the

volume of requests that the testing tool will simulate to assess how the system responds

to various levels of traffic.

By executing these scenarios on a dedicated system, we were able to ensure that the test results

accurately reflected the API’s performance under different traffic conditions, from light loads to

high concurrency. It is important to note that the testing scenarios involving the effective RPS

are conducted under the assumption that 3 HSMs are being operated, and the load is distributed

among them.

5.2 Evaluation Metrics

After discussing the experimental setup deployed to run the evaluation, it is important to high-

light that the assessment of the SSL Everywhere architecture’s performance relies on a set of

well-defined evaluation metrics, centered around certificate generation requests. These metrics

serve as the benchmark against which we measure the efficiency, reliability, and scalability of

the system in the context of secure certificate generation. By systematically quantifying various

aspects of performance during these certificate generation requests, we gain valuable insights

into the system’s behavior under different scenarios and workloads. This section outlines the

key evaluation metrics used in our study and explains their significance in the context of our

performance evaluation.

• Effective RPS: Effective RPS measures the rate at which the system can handle incom-

ing certificate generation requests while considering factors like concurrent users. It is

a critical metric for assessing the application’s throughput and scalability in the con-
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text of secure certificate generation. Effective RPS provides valuable insights into how

efficiently the system can process a specific number of certificate requests per second

• Latency: Latency refers to the time delay or the elapsed time between the initiation of a

request and the moment when a response is received. It encompasses the time required

for a single request to be transmitted, processed by the system, and for the corresponding

response to return. It is a fundamental metric for assessing the responsiveness of the

system. Lower latency is desirable as it signifies faster response times

• Processing Time: Processing time represents the time it takes for the system to handle

and process all sent requests from the moment they are received until the responses are

generated. It includes time spent in the application logic, database queries, and other

processing steps.

• CPU Usage: Using the top command, CPU usage measures the amount of resources

consumed by the central processing unit (CPU) during the test. High CPU usage can

indicate that the system is resource-intensive and may struggle to handle additional load.

Monitoring CPU usage is essential to optimize resource allocation and prevent system

overload.

• Network Bandwidth: Network bandwidth measures the amount of data transmitted over

the network during the load test using the nload tool. Monitoring network bandwidth is

important for understanding the network’s capacity and ensuring that it can handle the

required data transfer rates.

Systematically evaluating the aforementioned metrics provides an understanding of the SSL

Everywhere architecture’s behavior under various scenarios and workloads, which in turn helps

in identifying areas of improvement.
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5.3 Results & Discussion

After establishing a foundation on the selected evaluation metrics, this section provides a com-

prehensive analysis of the performance evaluation conducted on the SSL Everywhere architec-

ture. The results obtained from the experiments, as well as their implications, are presented

and discussed in detail. By delving into the data and their significance, we aim to shed light on

the strengths, weaknesses, and overall effectiveness of the SSL Everywhere architecture in the

context of certificate generation and secure communication. This section also addresses how

the architecture compares to OpenSSL and the implications for real-world applications.

5.3.1 Scalability Assessment

Starting with the results, our evaluation of scalability entails the analysis of three core metrics:

effective Requests Per Second (RPS), latency, and processing time. To assess effective RPS

and latency, we systematically increased the concurrent users parameter. To ensure a more

comprehensive realistic assessment, each test that involved varying concurrent users ran for

10 seconds and monitored the corresponding values. For effective RPS, the value of RPS was

given by getting the total number of successful requests and dividing them by 10. For the

latency metric, the average latency was given for all successful requests for each test run.

From the results shown in Figure 5.2, we observed that both SSL Everywhere and OpenSSL

have a roughly steady and consistent RPS rate as the number of concurrent users increased.

This finding suggests that both systems demonstrated a remarkable ability to handle an in-

creasing workload without a significant drop in RPS, emphasizing their scalability under the

test conditions. However, a notable trend has become evident. SSL Everywhere consistently

exhibits a higher RPS compared to OpenSSL at various user load levels. This indicates the

remarkable efficiency and scalability of SSL Everywhere in processing a greater number of

requests in parallel.

Throughout all testing scenarios, SSL Everywhere was able to successfully respond to a max-

imum of 111 requests/second. Conversely, even the minimum RPS observed for SSL Ev-

erywhere is a commendable 104 requests/second, which significantly surpasses the maximum
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RPS of 83 achieved by OpenSSL. This stark contrast underscores SSL Everywhere’s domi-

nance in terms of peak RPS. The architecture consistently excels not only in its highest RPS

achievements but also maintains a high average of 106 RPS. This outstanding performance

further highlights the reliability, efficiency, and scalability of SSL Everywhere, making it a

compelling choice for applications demanding rapid and parallelized certificate generation re-

quests. In comparison, OpenSSL, while demonstrating its competence with an average RPS of

81, falls behind in both peak and average RPS when compared to SSL Everywhere. OpenSSL’s

maximum RPS, while respectable at 83, is notably outperformed by SSL Everywhere’s base-

line RPS, which, even at its minimum, remains higher at 104.

Figure 5.2: Effective RPS Results

Despite SSL Everywhere’s higher RPS, it is essential to consider the corresponding latency

values, as shown in Figure 5.3. Our analysis reveals that as the number of concurrent users

increases, both SSL Everywhere and OpenSSL exhibit a gradual increase in latency, which is

expected as system loads intensify. However, a noteworthy distinction emerges between the

two. OpenSSL consistently records higher latency compared to SSL Everywhere, and this

divergence becomes more pronounced as the user load intensifies.



64 Chapter 5. Performance Evaluation

On average, the latency for each request served by OpenSSL tends to be 13.08% higher than

that of SSL Everywhere, especially as the concurrent user count rises. Despite the significant

contrast in effective RPS between both architectures, the relatively slight disparity in latency

can be ascribed to the inherent architectural complexity of SSL Everywhere, which inherently

involves a more complex sequence of processes and database operations for each certificate

generation request. Those operations include, but are not limited to, checking if the selected

HSM is initialized, retrieving user’s information, updating user’s request count, and submitting

users’s certificate to be saved.

An increase in latency for each request when concurrent users increase indicates that SSL

Everywhere does not employ parallelization methods to process requests simultaneously. In

this context, it means that each request is handled sequentially, one after the other, as opposed

to running multiple requests in parallel. The gradual rise in latency signifies that as the load

intensifies, each new request may need to wait in line, leading to longer response times.

Figure 5.3: Latency Results

In addition to investigating latency, the assessment of processing time provides additional in-

formation on the performance characteristics of SSL Everywhere and OpenSSL. It’s essential

to note that this assessment primarily focuses on the effect of increasing the number of requests
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rather than concurrent users, as we aim to gauge the total processing time across different work-

loads. The results shown in Figure 5.4 clearly show that as the number of requests increases,

both SSL Everywhere and OpenSSL experience a gradual increase in processing time, a trend

to be expected as the demand for certificate generation grows.

Notably, OpenSSL consistently records a processing time that is, on average, 23.2% higher than

that of SSL Everywhere as the number of requests increases. Similar to the latency test, this

insignificant difference in processing time highlights the architectural and operational variances

between the two systems.

Figure 5.4: Processing Time Results

5.3.2 Resource Utilization

In addition to scalability, another evaluation criterion is the evaluation of resource utiliza-

tion, with a specific focus on CPU usage, sheds light on how efficiently SSL Everywhere and

OpenSSL manage system resources as the number of sent requests increases, while stressing

both architectures and eventually sending 500 requests to be processed. This assessment oc-
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curs as a stress test as the volume of sent requests increases, subjecting both architectures to

escalating loads, eventually processing a total of 500 requests.

CPU usage was determined using top command by closely monitoring essential components,

namely Python, Google Chrome, and the MySQL database for the SSL Everywhere architec-

ture. This thorough analysis offers a comprehensive perspective on the CPU demands imposed

on the system during the certificate generation process.

An interesting observation from the results shown in Figure 5.5 is the clear and consistent log-

arithmic growth exhibited by SSL Everywhere, and a linear trend by OpenSSL. However, SSL

Everywhere’s growth in CPU usage is notably more pronounced compared to OpenSSL since

SSL Everywhere includes more complex backend processes, such as generating the ADCP

message, forwarding the message to multiple managers, generating the policy set, and access-

ing databases to save or retrieve information.

Throughout the tests, SSL Everywhere showcases an ability to efficiently utilize CPU re-

sources, as evidenced by the substantial growth in CPU usage. This growth, although higher,

eventually stabilizes at a maximum of 15.1%. This is because the application or processes

included in SSL Everywhere may be configured with resource allocation limits that restrict its

ability to consume more than a certain percentage of the CPU’s total capacity.

5.3.3 Network Usage

Another evaluation criterion, which involves the use of the nload tool, offers crucial insights

into network utilization. This evaluation concentrates on understanding the influence of cer-

tificate generation on network resources, specifically focusing on SSL Everywhere. Notably,

OpenSSL operates and is utilized locally within each server, rendering the monitoring of net-

work utilization primarily relevant to SSL Everywhere.

Throughout our experiments shown in Figure 5.6, we observed a consistent upward trajectory

in network bandwidth consumption by SSL Everywhere. As the number of concurrent users

increased, so did the utilization of the network bandwidth. This growth in network utilization is
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Figure 5.5: CPU Usage Results

in line with the increased demand for certificate generation requests. However, it is noteworthy

that the network bandwidth utilization eventually reaches a ceiling, stabilizing at approximately

690-700 KB/s. This observed cap indicates that SSL Everywhere, while efficiently scaling

to meet growing demands, has an upper limit in terms of network resource utilization. The

stability in network bandwidth at this level underscores the architecture’s ability to effectively

allocate and manage network resources without excessive saturation.

Consistency in network bandwidth, as seen in Figure 5.6 offers a great advantage, as it leads

to efficient resource management and improved quality of service, particularly for applications

requiring a consistent level of bandwidth. Furthermore, maintaining consistent network band-

width is crucial to enhancing user experience by providing reliable and uninterrupted access to

the security services provided by SSL Everywhere. In addition, it helps in security efforts, as

unexpected spikes in bandwidth usage can signal potential threats [56].
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Figure 5.6: Network Bandwidth Results

5.3.4 Discussion

Following the evaluation of the aforementioned criteria, we proceed to discuss our findings.

The performance evaluation of SSL Everywhere and its comparison with OpenSSL have re-

vealed valuable insights into the strengths and areas for improvement of the SSL Everywhere

architecture. This discussion section delves into the findings and outlines strategies to enhance

SSL Everywhere’s performance, addressing the observed weaknesses.

Parallelization

The first notable weakness observed in SSL Everywhere is the increase in latency and process-

ing time for each test as the number of concurrent users and requests increases, as shown in

Figure 5.3 and Figure 5.4. This suggests an opportunity for improvement through the imple-

mentation of parallelization and multithreading methods. By introducing parallel processing,

SSL Everywhere can reduce latency and processing time by enabling the simultaneous ex-

ecution of multiple certificate generation requests. This approach can enhance the system’s

responsiveness under heavy workloads and significantly improve the user experience, particu-
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larly in real-time or interactive applications.

Database Caching

Another area of concern revolves around SSL Everywhere’s CPU usage growth, which, even-

tually stabilizes at a reasonable level, presents room to be further optimized. To reduce CUP

utilization caused by MySQL processes, one strategy is to implement database caching mecha-

nisms for MySQL database processes. Caching frequently accessed data can reduce the compu-

tational load on the CPU by minimizing the need to repeatedly retrieve data from the database.

This optimization can lead to more efficient resource utilization and ultimately lower CPU

usage.

Request Throttling

Another area of improvement is to perform request throttling. To manage system resource

demands and maintain a consistent level of performance, it may be beneficial to implement

controls on the number of requests sent by each user in a period of time. By limiting the number

of requests from a single user, SSL Everywhere can prevent potential spikes in resource usage

and maintain a smoother and more predictable operation. This approach can help ensure fair

resource allocation, reduce the risk of resource contention, and mitigate the impact of excessive

concurrent requests on system performance.

In conclusion, the weaknesses observed in SSL Everywhere present opportunities for improve-

ment and refinement. Implementing parallelization methods, optimizing CPU usage through

caching, and introducing request limits per user are viable strategies to address these weak-

nesses and further elevate SSL Everywhere’s performance and efficiency in providing various

security services. These improvements can position SSL Everywhere as a robust solution for a

wide range of demanding real-world applications.
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Conclusion & Future Work

6.1 Conclusion

In an era marked by ever-increasing digitalization and networked communication, security

and privacy are of paramount concern. The SSL Everywhere architecture has appeared as

a novel solution to address the evolving challenges of secure communication within intra-

domain environments. This research has discussed the architecture’s design, components, and

performance evaluation, providing valuable insights into its capabilities and contributions.

The primary objective of this research was to study and examine the security challenges within

intra-domain environments, along with industrial and academic solutions. This led to the devel-

opment of a centralized architecture that improves security within intra-domain environments.

In the course of this research, the following objectives have been successfully achieved:

1. Investigate current security challenges in intra-domain communication.

2. Study and review networking protocols deployed in intra-domain environments along

with their security mechanisms.

3. Examine the most recent academic and industrial solutions that address the weaknesses

of intra-domain communication.

70
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4. Identify the weaknesses and limitations within the security measures of individual net-

working protocols, as well as the shortcomings in existing solutions.

5. Propose and design the SSL Everywhere architecture that overcomes the aforementioned

weaknesses and limitations.

6. Develop and build the SSL Everywhere architecture through a bottom-up approach.

7. Evaluate the SSL Everywhere’s performance through a comparative analysis with a tradi-

tional solution, considering factors such as latency, throughput, and resource utilization.

8. Point out weaknesses in the SSL Everywhere and identify areas for improvement.

Moreover, SSL Everywhere’s integration of Hardware Security Modules has contributed to its

robustness by providing secure storage and key management. This implementation ensures that

cryptographic keys and sensitive data are protected against unauthorized access and tampering,

reinforcing the architecture’s commitment to security.

Further, through detailed design and careful consideration of secure communication princi-

ples, SSL Everywhere has demonstrated its ability to provide encryption, authentication, and

integrity, thus safeguarding sensitive data during transmission. Table 6.1 illustrates how SSL

Everywhere successfully fills the security gaps across the discussed intra-domain communi-

cation protocols, providing an all-encompassing mechanism to cover current security weak-

nesses. Plus, after running a series of performance assessments, the architecture’s API design

has proven to be efficient and adaptable to provide a seamless user experience for various se-

curity services.

In summary, this research serves as a foundational step toward achieving the goal of secure

communication within intra-domain environments. It is expected that ongoing developments

and refinements will continue to strengthen SSL Everywhere’s position as a valuable tool in

the realm of secure networking.
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Table 6.1: Comparison Between Security Mechanisms of Mentioned Networking Protocols
Protocol Security Mechanism Peer-to-Peer Achieves Encryption SSL-Based Forces Encryption

HTTP
HTTPS Yes Yes Yes No

HTTPS/HSTS No Yes Yes Yes

SMTP STARTTLS Yes Yes Yes No

TCP TCPCrypt Yes Yes No No

DHCP DHCP Snooping No No - -

SSL Everywhere - Yes Yes Yes Yes

6.2 Future Work

While SSL Everywhere represents a significant advancement in addressing the security chal-

lenges within intra-domain environments, several avenues for future research and development

can further enhance its capabilities and impact. Some potential areas for future work include:

• Integration and Compatibility with Diverse HSMs: Future work can focus on enhanc-

ing SSL Everywhere’s compatibility with a broader range of HSMs, allowing organiza-

tions to choose from a diverse set of HSM options while maintaining the architecture’s

security standards and principles.

• Enhanced Performance Optimization: As mentioned in 5.3.4, continued efforts can

be made to optimize SSL Everywhere’s performance, particularly in scenarios with a

high volume of concurrent connections. Further research may explore advanced load

balancing techniques, caching mechanisms, and parallel processing to reduce latency

and improve throughput.

• Enhanced Security Analytics: Improving the architecture’s capabilities for monitoring

and analyzing security events in real-time can be beneficial. Future work can explore

the integration of advanced security information and event management (SIEM) [57]

systems for proactive threat detection and response.

• Standardization and Industry Adoption: Future work can involve efforts to promote

SSL Everywhere as an industry-standard solution for secure intra-domain communica-
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tion. Collaboration with relevant standardization bodies and industry organizations may

be essential to achieving widespread adoption.

This thesis is a component of a broader research initiative aimed at introducing innovative so-

lutions to enhance the security and efficiency of communication within intra-domain environ-

ments. As part of this ongoing effort, several areas of potential future work have been identified

to further advance the SSL Everywhere architecture and address emerging challenges.
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