8 research outputs found

    Bright X-ray flares from the BL Lac object Mrk 421, detected with MAXI in 2010 January and February

    Full text link
    Strong X-ray flares from the blazar Mrk 421 were detected in 2010 January and February through the 7 month monitoring with the MAXI GSC. The maximum 2 -- 10 keV flux in the January and February flares was measured as 120 +- 10 mCrab and 164 +- 17 mCrab respectively; the latter is the highest among those reported from the object. A comparison of the MAXI and Swift BAT data suggests a convex X-ray spectrum with an approximated photon index of about 2. This spectrum is consistent with a picture that MAXI is observing near the synchrotron peak frequency. The source exhibited a spectral variation during these flares, slightly different from those in the previous observations, in which the positive correlation between the flux and hardness was widely reported. By equating the halving decay timescale in the January flare, td2.5×104t_{\rm d} \sim 2.5 \times 10^{4} s, to the synchrotron cooling time, the magnetic field was evaluated as B = 0.045 G (δ/10)1/3(\delta/10)^{-1/3}, where δ\delta is the jet beaming factor. Assuming that the light crossing time of the emission region is shorter than the doubling rise time, tr2×104t_{\rm r} \lesssim 2 \times 10^{4} s, the region size was roughly estimated as R<6×1015 R < 6 \times 10^{15} cm (δ/10)(\delta/10). These are consistent with the values previously reported. For the February flare, the rise time, tr<1.3×105t_{\rm r} < 1.3 \times 10^{5} s, gives a loose upper limit on the size as R<4×1016 R < 4 \times 10^{16} cm (δ/10)(\delta/10), although the longer decay time td1.4×105t_{\rm d} \sim 1.4 \times 10^{5} s, indicates B = 0.015 G (δ/10)1/3(\delta/10)^{-1/3}, which is weaker than the previous results. This could be reconciled by invoking a scenario that this flare is a superposition of unresolved events with a shorter timescale.Comment: 14 pages, 4 figures, accepted for PASJ (Vol. 62 No. 6

    MAXI GSC observations of a spectral state transition in the black hole candidate XTE J1752-223

    Full text link
    We present the first results on the black hole candidate XTE J1752-223 from the Gas Slit Camera (GSC) on-board the Monitor of All-sky X-ray Image (MAXI) on the International Space Station. Including the onset of the outburst reported by the Proportional Counter Array on-board the Rossi X-ray Timing Explorer on 2009 October 23, the MAXI/GSC has been monitoring this source approximately 10 times per day with a high sensitivity in the 2-20 keV band. XTE J1752-223 was initially in the low/hard state during the first 3 months. An anti-correlated behavior between the 2-4 keV and 4-20 keV bands were observed around January 20, 2010, indicating that the source exhibited the spectral transition to the high/soft state. A transient radio jet may have been ejected when the source was in the intermediate state where the spectrum was roughly explained by a power-law with a photon index of 2.5-3.0. The unusually long period in the initial low/hard state implies a slow variation in the mass accretion rate, and the dramatic soft X-ray increase may be explained by a sudden appearance of the accretion disk component with a relatively low innermost temperature (0.4-0.7 keV). Such a low temperature might suggest that the maximum accretion rate was just above the critical gas evaporation rate required for the state transition.Comment: Publication of Astronomical Society of Japan Vol.62, No.5 (2010) [in print

    A Large X-ray Flare from a Single Weak-lined T Tauri Star TWA-7 Detected with MAXI GSC

    Full text link
    We present a large X-ray flare from a nearby weak-lined T Tauri star TWA-7 detected with the Gas Slit Camera (GSC) on the Monitor of All-sky X-ray Image (MAXI). The GSC captured X-ray flaring from TWA-7 with a flux of 3×1093\times10^{-9} ergs cm2^{-2} s1^{-1} in 2--20 keV band during the scan transit starting at UT 2010-09-07 18:24:30.The estimated X-ray luminosity at the scan in the energy band is 3×1032\times10^{32} ergs s1^{-1},indicating that the event is among the largest X-ray flares fromT Tauri stars.Since MAXI GSC monitors a target only during a scan transit of about a minute per 92 min orbital cycle, the luminosity at the flare peak might have been higher than that detected. At the scan transit, we observed a high X-ray-to-bolometric luminosity ratio, log LX/LbolL_{\rm X}/L_{\rm bol} = 0.10.3+0.2-0.1^{+0.2}_{-0.3}; i.e., the X-ray luminosity is comparable to the bolometric luminosity. Since TWA-7 has neither an accreting disk nor a binary companion, the observed event implies that none of those are essential to generate such big flares in T Tauri stars.Comment: 4 pages, 2 figures, 1 table accepted for publication in PAS

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF

    PVP2006-ICPVT11-93903 EXPERIMENTS ON THE PLANAR LATERAL VIBRATION OF A VERTICAL FLUID-CONVEYING PIPE WITH AN END MASS

    No full text
    ABSTRACT This paper experimentally examines lateral vibrations of a cantilevered pipe that is hung vertically with an end mass and conveys fluid with a flow velocity that is entirely constant. It is well known from linear stability theory that when the velocity of a fluid exceeds a certain value, a certain characteristic mode of pipe vibration becomes unstable. Moreover, higher modes of pipe vibration become unstable simultaneously with increasing flow velocities. We are interested in the case in which two-frequency oscillation occurs in the pipe involving the above two unstable modes at higher flow velocities. This phenomenon will be called mixed mode flutter. This phenomenon for a cantilevered pipe is essentially different from the cases of a pinedpined or clamped-clamped pipe with two marginal modes. In these cases, only the higher mode of the pipe vibration becomes unstable while the lower mode becomes stable at much higher flow velocities. Experiments were conducted with a silicon rubber pipe conveying water. The planar behaviors of the vertical fluid-conveying pipe with an end mass were observed using an image processing system that is based on the images captured by two CCD cameras. As a result, lower mode flutter, unstable mixed-mode flutter and also higher mode flutter were experimentally confirmed for the cantilevered pipe. Furthermore, the above phenomena are discussed using the basic equation of nonlinear planar lateral vibration of a vertical fluid-conveying pipe with an end mass from the viewpoint of nonlinear dynamics

    Refractory Right Ventricular Failure in a Patient with Emery-Dreifuss Muscular Dystrophy

    No full text
    A 23-year-old man had progressive muscle weakness and Emery-Dreifuss muscular dystrophy (EDMD) due to a LMNA (lamin A/C) mutation. Congestive heart failure diagnosed at 19 years of age. Maximal drug treatment/cardiac resynchronization failed to improve the cardiac function. He was therefore hospitalized due to heart failure. Despite extracorporeal membrane oxygenation, he developed severe right heart dysfunction and died (multiple organ failure). A cardiac lesion's presence determines the prognosis of EDMD. While there are many arrhythmia reports, few reports on heart failure (particularly severe heart failure requiring cardiac transplantation) have been published. Right heart function monitoring and early ventricular-assist device use plus right heart support considering heart transplantation are important
    corecore