1,292 research outputs found

    Origami constraints on the initial-conditions arrangement of dark-matter caustics and streams

    Full text link
    In a cold-dark-matter universe, cosmological structure formation proceeds in rough analogy to origami folding. Dark matter occupies a three-dimensional 'sheet' of free- fall observers, non-intersecting in six-dimensional velocity-position phase space. At early times, the sheet was flat like an origami sheet, i.e. velocities were essentially zero, but as time passes, the sheet folds up to form cosmic structure. The present paper further illustrates this analogy, and clarifies a Lagrangian definition of caustics and streams: caustics are two-dimensional surfaces in this initial sheet along which it folds, tessellating Lagrangian space into a set of three-dimensional regions, i.e. streams. The main scientific result of the paper is that streams may be colored by only two colors, with no two neighbouring streams (i.e. streams on either side of a caustic surface) colored the same. The two colors correspond to positive and negative parities of local Lagrangian volumes. This is a severe restriction on the connectivity and therefore arrangement of streams in Lagrangian space, since arbitrarily many colors can be necessary to color a general arrangement of three-dimensional regions. This stream two-colorability has consequences from graph theory, which we explain. Then, using N-body simulations, we test how these caustics correspond in Lagrangian space to the boundaries of haloes, filaments and walls. We also test how well outer caustics correspond to a Zel'dovich-approximation prediction.Comment: Clarifications and slight changes to match version accepted to MNRAS. 9 pages, 5 figure

    Semiarid watershed response in central New Mexico and its sensitivity to climate variability and change

    Get PDF
    Hydrologic processes in the semiarid regions of the Southwest United States are considered to be highly susceptible to variations in temperature and precipitation characteristics due to the effects of climate change. Relatively little is known about the potential impacts of climate change on the basin hydrologic response, namely streamflow, evapotranspiration and recharge, in the region. In this study, we present the development and application of a continuous, semi-distributed watershed model for climate change studies in semiarid basins of the Southwest US. Our objective is to capture hydrologic processes in large watersheds, while accounting for the spatial and temporal variations of climate forcing and basin properties in a simple fashion. We apply the model to the Río Salado basin in central New Mexico since it exhibits both a winter and summer precipitation regime and has a historical streamflow record for model testing purposes. Subsequently, we use a sequence of climate change scenarios that capture observed trends for winter and summer precipitation, as well as their interaction with higher temperatures, to perform long-term ensemble simulations of the basin response. Results of the modeling exercise indicate that precipitation uncertainty is amplified in the hydrologic response, in particular for processes that depend on a soil saturation threshold. We obtained substantially different hydrologic sensitivities for winter and summer precipitation ensembles, indicating a greater sensitivity to more intense summer storms as compared to more frequent winter events. In addition, the impact of changes in precipitation characteristics overwhelmed the effects of increased temperature in the study basin. Nevertheless, combined trends in precipitation and temperature yield a more sensitive hydrologic response throughout the year

    La gestión en la instrumentación de programas de formación y actualización de profesores por la coordinación de formación docente, Facultad de Química, UNAM

    Get PDF
    En este trabajo se presentan las acciones de gestión que la Coordinación de Formación Docente de la Secretaría de Extensión Académica de la Facultad de Química de la Universidad Nacional Autónoma de México realiza antes, durante y después de la instrumentación de programas de formación y actualización de profesores de ciencias educación básica, en servicio

    Data driven flavour model

    Get PDF
    A bottom-up approach has been adopted to identify a flavour model that agrees with present experimental measurements. The charged fermion mass hierarchies suggest that only the top Yukawa term should be present at the renormalisable level. Similarly, describing the lightness of the active neutrinos through the type-I Seesaw mechanism, right-handed neutrino mass terms should also be present at the renormalisable level. The flavour symmetry of the Lagrangian including the fermionic kinetic terms and only the top Yukawa is then a combination of U(2) and U(3) factors. Once considering the Majorana neutrino terms, the associated symmetry is O(3). Lighter charged fermion and active neutrino masses and quark and lepton mixings arise considering specific spurion fields à la Minimal Flavour Violation. The associated phenomenology is investigated and the model turns out to have almost the same flavour protection as the Minimal Flavour Violation in both quark and lepton sectors. Promoting the spurions to dynamical fields, the associated scalar potential is also studied and a minimum is identified such that fermion masses and mixings are correctly reproduced. Very precise predictions for the Majorana phases follow from the minimisation of the scalar potential and thus the neutrinoless-double-beta decay may represent a smoking gun for the model
    corecore