57 research outputs found

    Failure of Working Memory Training to Enhance Cognition or Intelligence

    Get PDF
    Fluid intelligence is important for successful functioning in the modern world, but much evidence suggests that fluid intelligence is largely immutable after childhood. Recently, however, researchers have reported gains in fluid intelligence after multiple sessions of adaptive working memory training in adults. The current study attempted to replicate and expand those results by administering a broad assessment of cognitive abilities and personality traits to young adults who underwent 20 sessions of an adaptive dual n-back working memory training program and comparing their post-training performance on those tests to a matched set of young adults who underwent 20 sessions of an adaptive attentional tracking program. Pre- and post-training measurements of fluid intelligence, standardized intelligence tests, speed of processing, reading skills, and other tests of working memory were assessed. Both training groups exhibited substantial and specific improvements on the trained tasks that persisted for at least 6 months post-training, but no transfer of improvement was observed to any of the non-trained measurements when compared to a third untrained group serving as a passive control. These findings fail to support the idea that adaptive working memory training in healthy young adults enhances working memory capacity in non-trained tasks, fluid intelligence, or other measures of cognitive abilities.National Institutes of Health (U.S.) (Blueprint for Neuroscience Research (T90DA022759/R90DA023427)United States. Defense Advanced Research Projects Agency (government contract no. NBCHC070105)United States. Dept. of Defense (National Defense Science and Engineering Fellowship)Massachusetts Institute of Technology (Sheldon Razin (1959) Fellowship

    Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence

    Get PDF
    Additional file 3: Figure S3. Regulation of genes of Arrhythmogenic right ventricular cardiomyopathy pathway during senescence induction in HFF strains Genes of the “Arrhythmogenic right ventricular cardiomyopathy” pathway which are significantly up- (green) and down- (red) regulated (log2 fold change >1) during irradiation induced senescence (120 h after 20 Gy irradiation) in HFF strains. Orange color signifies genes which are commonly up-regulated during both, irradiation induced and replicative senescence

    Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA

    No full text
    <div><p>Subsurface habitats harbor novel diversity that has received little attention until recently. Accessible subsurface habitats include lava caves around the world that often support extensive microbial mats on ceilings and walls in a range of colors. Little is known about lava cave microbial diversity and how these subsurface mats differ from microbial communities in overlying surface soils. To investigate these differences, we analyzed bacterial 16S rDNA from 454 pyrosequencing from three colors of microbial mats (tan, white, and yellow) from seven lava caves in Lava Beds National Monument, CA, USA, and compared them with surface soil overlying each cave. The same phyla were represented in both surface soils and cave microbial mats, but the overlap in shared OTUs (operational taxonomic unit) was only 11.2%. Number of entrances per cave and temperature contributed to observed differences in diversity. In terms of species richness, diversity by mat color differed, but not significantly. <i>Actinobacteria</i> dominated in all cave samples, with 39% from caves and 21% from surface soils. <i>Proteobacteria</i> made up 30% of phyla from caves and 36% from surface soil. Other major phyla in caves were <i>Nitrospirae</i> (7%) followed by minor phyla (7%), compared to surface soils with <i>Bacteroidetes</i> (8%) and minor phyla (8%). Many of the most abundant sequences could not be identified to genus, indicating a high degree of novelty. Surface soil samples had more OTUs and greater diversity indices than cave samples. Although surface soil microbes immigrate into underlying caves, the environment selects for microbes able to live in the cave habitats, resulting in very different cave microbial communities. This study is the first comprehensive comparison of bacterial communities in lava caves with the overlying soil community.</p></div

    Skin and fur bacterial diversity and community structure on American southwestern bats: effects of habitat, geography and bat traits

    No full text
    Microorganisms that reside on and in mammals, such as bats, have the potential to influence their host’s health and to provide defenses against invading pathogens. However, we have little understanding of the skin and fur bacterial microbiota on bats, or factors that influence the structure of these communities. The southwestern United States offers excellent sites for the study of external bat bacterial microbiota due to the diversity of bat species, the variety of abiotic and biotic factors that may govern bat bacterial microbiota communities, and the lack of the newly emergent fungal disease in bats, white-nose syndrome (WNS), in the southwest. To test these variables, we used 16S rRNA gene 454 pyrosequencing from swabs of external skin and fur surfaces from 163 bats from 13 species sampled from southeastern New Mexico to northwestern Arizona. Community similarity patterns, random forest models, and generalized linear mixed-effects models show that factors such as location (e.g., cave-caught versus surface-netted) and ecoregion are major contributors to the structure of bacterial communities on bats. Bats caught in caves had a distinct microbial community compared to those that were netted on the surface. Our results provide a first insight into the distribution of skin and fur bat bacteria in the WNS-free environment of New Mexico and Arizona. More importantly, it provides a baseline of bat external microbiota that can be explored for potential natural defenses against pathogens

    Alpha diversity indices (richness, Chao1, and Shannon).

    No full text
    <p>Box plots of surface soils and cave microbial mats by color. Surface soil samples are in blue and cave samples in red.</p

    Staggered bar chart of relative abundance of OTUs.

    No full text
    <p>Major and minor phyla by all cave samples and all surface samples. Cave samples have a greater relative abundance of <i>Actinobacteria</i> and <i>Nitrospirae</i>.</p

    NMDS (Non-Metric Dimensional Scaling).

    No full text
    <p>NMDS separates out lava cave mat communities at the phylum level, with <i>Proteobacteria</i> split out by class, from the overlying surface soils. Circles show the 95% confidence interval.</p
    • …
    corecore