2 research outputs found

    Phosphorus Retention and Remobilization along Hydrological Pathways in Karst Terrain

    No full text
    Karst landscapes are often perceived as highly vulnerable to agricultural phosphorus (P) loss, via solution-enlarged conduits that bypass P retention processes. Although attenuation of P concentrations has been widely reported within karst drainage, the extent to which this results from hydrological dilution, rather than P retention, is poorly understood. This is of strategic importance for understanding the resilience of karst landscapes to P inputs, given increasing pressures for intensified agricultural production. Here hydrochemical tracers were used to account for dilution of P, and to quantify net P retention, along transport pathways between agricultural fields and emergent springs, for the karst of the Ozark Plateau, midcontinent USA. Up to ∼70% of the annual total P flux and ∼90% of the annual soluble reactive P flux was retained, with preferential retention of the most bioavailable (soluble reactive) P fractions. Our results suggest that, in some cases, karst drainage may provide a greater P sink than previously considered. However, the subsequent remobilization and release of the retained P may become a long-term source of slowly released “legacy” P to surface waters

    Phosphorus Retention and Remobilization along Hydrological Pathways in Karst Terrain

    No full text
    Karst landscapes are often perceived as highly vulnerable to agricultural phosphorus (P) loss, via solution-enlarged conduits that bypass P retention processes. Although attenuation of P concentrations has been widely reported within karst drainage, the extent to which this results from hydrological dilution, rather than P retention, is poorly understood. This is of strategic importance for understanding the resilience of karst landscapes to P inputs, given increasing pressures for intensified agricultural production. Here hydrochemical tracers were used to account for dilution of P, and to quantify net P retention, along transport pathways between agricultural fields and emergent springs, for the karst of the Ozark Plateau, midcontinent USA. Up to ∼70% of the annual total P flux and ∼90% of the annual soluble reactive P flux was retained, with preferential retention of the most bioavailable (soluble reactive) P fractions. Our results suggest that, in some cases, karst drainage may provide a greater P sink than previously considered. However, the subsequent remobilization and release of the retained P may become a long-term source of slowly released “legacy” P to surface waters
    corecore