8 research outputs found

    Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures

    No full text
    We present a detailed study on the resonant gain (RG) phenomena occurring in two nanostructures, in which the presence of dielectric singularities is used to reach a huge amplification of the emitted photons resonantly interacting with the system. The presence of gain molecules in the considered nanoresonator systems makes it possible to obtain optical features that are able to unlock several applications. Two noticeable cases have been investigated: a 1D nanoresonator based on hyperbolic metamaterials and a 3D metal/dielectric spherical multishell. The former has been designed in the framework of the effective medium theory, in order to behave as an <i>epsilon-near-zero-and-pole</i> metamaterial, showing extraordinary light confinement and collimation. Such a peculiarity represents the key to lead to a RG behavior, a condition in which the system is demonstrated to behave as a self-amplifying perfect lens. Very high enhancement and spectral sharpness of 1 nm of the emitted light are demonstrated by means of a transfer matrix method simulation. The latter system consists of a metal/doped-dielectric multishell. A dedicated theoretical approach has been set up to finely engineer its doubly tunable resonant nature. The RG condition has been demonstrated also in this case. Finite element method-based simulations, together with an analytical model, clarify the electric field distribution inside the multishell and suggest the opportunity to use this device as a <i>self-enhanced loss compensated</i> multishell, being a favorable scenario for low-threshold SPASER action. Counterintuitively, exceeding the resonant gain amount of molecules in both systems causes a significant drop in the amplitude of the resonance

    Thermoplasmonic Effects in Gain-Assisted Nanoparticle Solutions

    No full text
    We report a detailed characterization of the photoinduced heating observed in gain-assisted solutions of gold nanoparticles (AuNPs). AuNPs, with sizes ranging from 14 to 48 nm and concentration of 2.5 × 10<sup>–10</sup> M, are exposed to different intensity values of a resonant continuous laser (532 nm), used to excite their localized surface plasmon resonance (LSPR), responsible for the photogeneration process. In this way the optimal conditions to achieve the maximum temperature variation with the least laser dosage are obtained. By addition of an organic dye to the solutions, whose emission band overlaps to the LSPR, we found that the contribution to the photothermal efficiency is enhanced if the solutions are excited at 405 nm. This happens in the case of smaller NPs, due to a strong coupling effect between the two subunits, which causes an increase of the extinction cross section of the whole gain-assisted system. On the other hand, for the larger AuNPs, an opposite behavior is found: a loss compensation mechanism, based on a resonant energy transfer process from gain units to plasmonic nanoparticles, limits the increase of the absorption cross section with a consequent lowering of the photothermal efficiency. The presented quantitative analysis of a dispersion of AuNPs results as fundamental for biomedical applications as well as for integrated plasmonic devices based on loss compensation effects, where the impact of undesirable thermal effects cannot be ignored

    Loss-Mitigated Collective Resonances in Gain-Assisted Plasmonic Mesocapsules

    No full text
    Inherent optical losses of plasmonic materials represent a crucial issue for optoplasmonics, whereas the realization of hierarchical plasmonic nanostructures implemented with gain functionalities is a promising and valuable solution to the problem. Here we demonstrate that porous silica capsules embedding gold nanoparticles (Au NPs) and fabricated at a scale intermediate between the single plasmonic nanostructure and bulk materials show remarkable form–function relations. At this scale, in fact, the plasmon–gain interplay is dominated by the location of the gain medium with respect to the spatial distribution of the local field. In particular, the hollow spherical cavities of these structures allow regions of uniform plasmonic field where the energy transfer occurring between chromophoric donors and the surrounding plasmonic acceptors gives rise to a broadband attenuation of losses

    Interface of Physics and Biology: Engineering Virus-Based Nanoparticles for Biophotonics

    No full text
    Virus-based nanoparticles (VNPs) have been used for a wide range of applications, spanning basic materials science and translational medicine. Their propensity to self-assemble into precise structures that offer a three-dimensional scaffold for functionalization has led to their use as optical contrast agents and related biophotonics applications. A number of fluorescently labeled platforms have been developed and their utility in optical imaging demonstrated, yet their optical properties have not been investigated in detail. In this study, two VNPs of varying architectures were compared side-by-side to determine the impact of dye density, dye localization, conjugation chemistry, and microenvironment on the optical properties of the probes. Dyes were attached to icosahedral cowpea mosaic virus (CPMV) and rod-shaped tobacco mosaic virus (TMV) through a range of chemistries to target particular side chains displayed at specific locations around the virus. The fluorescence intensity and lifetime of the particles were determined, first using photochemical experiments on the benchtop, and second in imaging experiments using tissue culture experiments. The virus-based optical probes were found to be extraordinarily robust under ultrashort, pulsed laser light conditions with a significant amount of excitation energy, maintaining structural and chemical stability. The most effective fluorescence output was achieved through dye placement at optimized densities coupled to the exterior surface avoiding conjugated ring systems. Lifetime measurements indicate that fluorescence output depends not only on spacing the fluorophores, but also on dimer stacking and configurational changes leading to radiationless relaxationand these processes are related to the conjugation chemistry and nanoparticle shape. For biological applications, the particles were also examined in tissue culture, from which it was found that the optical properties differed from those found on the benchtop due to effects from cellular processes and uptake kinetics. Data indicate that fluorescent cargos are released in the endolysosomal compartment of the cell targeted by the virus-based optical probes. These studies provide insight into the optical properties and fates of fluorescent proteinaceous imaging probes. The cellular release of cargo has implications not only for virus-based optical probes, but also for drug delivery and release systems

    Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes

    No full text
    Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue–Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities <i>via</i> propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics

    Analysis of Different European Hazelnut (<i>Corylus avellana</i> L.) Cultivars: Authentication, Phenotypic Features, and Phenolic Profiles

    No full text
    Hazelnuts exhibit functional properties due to their content in fatty acids and phenolic compounds that could positively affect human health. The food industry requires precise traits for morphological, chemical, and physical kernel features so that some cultivars could be more suitable for specific industrial processing. In this study, agronomical and morphological features of 29 hazelnut cultivars were evaluated and a detailed structural characterization of kernel polyphenols was performed, confirming the presence of protocatechuic acid, flavan-3-ols such as catechin, procyanidin B2, six procyanidin oligomers, flavonols, and one dihydrochalcone in all the analyzed cultivars. In addition, an innovative methodology based on the MALDI-TOF mass spectrometric analysis of peptide/protein components extracted from kernels was developed for the authentication of the most valuable cultivars. The proposed method is rapid, simple, and reliable and holds the potential to be applied in quality control processes. These results could be useful in hazelnut cultivar evaluation and choice for growers, breeders, and food industry

    Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays

    No full text
    Transparent conducting oxides (TCOs) are emerging as possible alternative constituent materials to replace noble metals such as silver and gold for low-loss plasmonic applications in the near-infrared (NIR) and mid-infrared (MIR) regimes. In particular, TCO-based nanostructures are extensively investigated for biospectroscopy exploiting their surface-enhanced infrared absorption (SEIRA). The latter enhances the absorption from vibrational and rotational modes of nearby biomolecules, making TCO nanostructures a promising candidate for IR sensing applications. Nevertheless, in order to produce inexpensive devices for lab-on-a-chip diagnostics, it would be favorable to achieve surface-enhanced infrared absorption with very simple microstructures not requiring nanosize control. In this work, we attempt to demonstrate a SEIRA effect with the least challenging fabrication, Îźm-scale instead of nm-scale, by tailoring both device design and charge density of the indium tin oxide (ITO) film. We show that microperiodic hole arrays in a ITO film are able to produce SEIRA via grating coupling. Such a study opens the way for innovative and disrupting biosensing devices

    Tailoring Electromagnetic Hot Spots toward Visible Frequencies in Ultra-Narrow Gap Al/Al<sub>2</sub>O<sub>3</sub> Bowtie Nanoantennas

    No full text
    Plasmonic bowtie nanoantennas are intriguing nanostructures, capable to achieve very high local electromagnetic (EM) field confinement and enhancement in the hot spots. This effect is strongly dependent on the gap size, which in turn is related to technological limitations. Ultranarrow gap bowtie nanoantennas, operating at visible frequencies, can be of great impact in biosensing applications and in the study of strong light–matter interactions with organic molecules. Here, we present a comprehensive study on the structural and optical properties of aluminum bowties, realized with ultranarrow gap by He<sup>+</sup>-ion milling lithography, and operating from the near-infrared to the red part of the visible range. Most importantly, this analysis demonstrates that large EM near-field enhancement and different hot spot spatial positions, as a function of nanometer-sized gaps, are constrained by the native aluminum oxide, thus, working as hot spot ruler
    corecore