20 research outputs found

    The role of carbonate-fluoride melt immiscibility in shallow REE deposit evolution

    Get PDF
    The Lugiin Gol nepheline syenite intrusion, Mongolia, hosts a range of carbonatite dikes mineralized in rare-earth elements (REE). Both carbonatites and nepheline syenite-fluoritecalcite veinlets are host to a previously unreported macroscale texture involving pseudographic intergrowths of fluorite and calcite. The inclusions within calcite occur as either pure fluorite, with associated REE minerals within the surrounding calcite, or as mixed calcitefluorite inclusions, with associated zirconosilicate minerals. Consideration of the nature of the texture, and the proportions of fluorite and calcite present (~29 and 71 mol%, respectively), indicates that these textures most likely formed either through the immiscible separation of carbonate and fluoride melts, or from cotectic crystallization of a carbonatefluoride melt. Laser ablation ICP-MS analyses show the pure fluorite inclusions to be depleted in REE relative to the calcite. A model is proposed, in which a carbonate-fluoride melt phase enriched in Zr and the REE, separated from a phonolitic melt, and then either unmixed or underwent cotectic crystallization to generate an REE-rich carbonate melt and an REE-poor fluoride phase. The separation of the fluoride phase (either solid or melt) may have contributed to the enrichment of the carbonate melt in REE, and ultimately its saturation with REE minerals. Previous data have suggested that carbonate melts separated from silicate melts are relatively depleted in the REE, and thus melt immiscibility cannot result in the formation of REE-enriched carbonatites. The observations presented here provide a mechanism by which this could occur, as under either model the textures imply initial separation of a mixed carbonate-fluoride melt from a silicate magma. The separation of an REE-enriched carbonate-fluoride melt from phonolitic magma is a hitherto unrecognized mechanism for REE-enrichment in carbonatites, and may play an important role in the formation of shallow magmatic REE deposits

    Genesis of the world’s largest rare earth element deposit, Bayan Obo, China:Protracted mineralization evolution over ~1 b.y.

    Get PDF
    The unique, giant, rare earth element (REE) deposit at Bayan Obo, northern China, is the world’s largest REE deposit. It is geologically complex, and its genesis is still debated. Here, we report in situ Th-Pb dating and Nd isotope ratios for monazite and Sr isotope ratios for dolomite and apatite from fresh drill cores. The measured monazite ages (361–913 Ma) and previously reported whole-rock Sm-Nd data show a linear relationship with the initial Nd isotope ratio, suggesting a single-stage evolution from a Sm-Nd source that was formed before 913 Ma. All monazites show consistent to those of the adjacent 1.3 Ga carbonatite and mafic dikes. The primary dolomite and apatite show lower than the recrystallized dolomite (0.7038–0.7097). The REE ores at Bayan Obo are interpreted to have originally formed as products of ca. 1.3 Ga carbonatitic magmatism and to have undergone subsequent thermal perturbations induced by Sr-rich, but REE-poor, metamorphic fluids derived from nearby sedimentary rocks.εNd(1.3Ga) values (0.3 ± 0.6) close87Sr/86Sr ratios (0.7024–0.7030

    Zircon Macrocrysts from the Drybones Bay Kimberlite Pipe (Northwest Territories, Canada): A High-Resolution Trace Element and Geochronological Study

    No full text
    Zircon macrocrysts in (sub)volcanic silica-undersaturated rocks are an important source of information about mantle processes and their relative timing with respect to magmatism. The present work describes variations in trace element (Sc, Ti, Y, Nb, lanthanides, Hf, Ta, Pb, Th, and U) and isotopic (U-Pb) composition of zircon from the Drybones Bay kimberlite, Northwest Territories, Canada. These data were acquired at a spatial resolution of ≤100 µm and correlated to the internal characteristics of macrocrysts (imaged using cathodoluminescence, CL). Six types of zircon were distinguished on the basis of its luminescence characteristics, with the majority of grains exhibiting more than one type of CL response. The oscillatory-zoned core and growth sectors of Drybones Bay zircon show consistent variations in rare-earth elements (REE), Hf, Th, and U. Their chondrite-normalized REE patterns are typical of macrocrystic zircon and exhibit extreme enrichment in heavy lanthanides and a positive Ce anomaly. Their Ti content decreases slightly from the core into growth sectors, but the Ti-in-zircon thermometry gives overlapping average crystallization temperatures (820 ± 26 °C to 781 ± 19 °C, respectively). There is no trace element or CL evidence for Pb loss or other forms of chemical re-equilibration. All distinct zircon types are concordant and give a U-Pb age of 445.6 ± 0.8 Ma. We interpret the examined macrocrysts as products of interaction between a shallow (<100 km) mantle source and transient kimberlitic melt

    Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China

    No full text
    Carbonatites are known to contain the highest concentrations of rare-earth elements (REE) among all igneous rocks. The REE distribution of carbonatites is commonly believed to be controlled by that of the rock-forming Ca minerals (i.e., calcite, dolomite, and ankerite) and apatite because of their high modal content and tolerance for the substitution of Ca by light REE (LREE). Contrary to this conjecture, calcite from the Miaoya carbonatite (China), analyzed in situ by laser-ablation inductively-coupled-plasma mass-spectrometry, is characterized by low REE contents (100–260<!-- --> <!-- -->ppm) and relatively flat chondrite-normalized REE distribution patterns [average (La/Yb)<sub>CN</sub> <!-- -->=<!-- --> <!-- -->1.6]. The carbonatite contains abundant REE-rich minerals, including monazite and fluorapatite, both precipitated earlier than the REE-poor calcite, and REE-fluorocarbonates that postdated the calcite. Hydrothermal REE-bearing fluorite and barite veins are not observed at Miaoya. The textural and analytical evidence indicates that the initially high concentrations of REE and P in the carbonatitic magma facilitated early precipitation of REE-rich phosphates. Subsequent crystallization of REE-poor calcite led to enrichment of the residual liquid in REE, particularly LREE. This implies that REE are generally incompatible with respect to calcite and the calcite/melt partition coefficients for heavy REE (HREE) are significantly greater than those for LREE. Precipitation of REE-fluorocarbonates late in the evolutionary history resulted in depletion of the residual liquid in LREE, as manifested by the development of HREE-enriched late-stage calcite [(La/Yb)<sub>CN</sub> <!-- -->≈<!-- --> <!-- -->0.7] in syenites associated with the carbonatite. The observed variations of REE distribution between calcite and whole rocks are interpreted to arise from multistage fractional crystallization (phosphates<!-- --> <!-- -->⇒<!-- --> <!-- -->calcite<!-- --> <!-- -->⇒<!-- --> <!-- -->REE-fluorocarbonates) from an initially REE-rich carbonatitic liquid
    corecore