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ABSTRACT 20 

The unique, giant, REE deposit at Bayan Obo is the world’s largest REE deposit. It 21 

is geologically complex and its genesis is still debated. Here, we report in situ Th-Pb dating 22 
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and Nd isotope ratios for monazite and Sr isotope ratios for dolomite and apatite from fresh 23 

drill–cores. The measured monazite ages (361–913Ma) and previously reported 24 

whole-rock Sm-Nd data show a linear relationship with initial Nd isotope ratio, suggesting 25 

a single-stage evolution from a Sm-Nd source that was formed before 913Ma. All 26 

monazites show consistent Nd(1.3Ga) values (0.3 ± 0.6) close to those of the adjacent 1.3Ga 27 

carbonatite and mafic dikes. The primary dolomite and apatite show lower 87Sr/86Sr ratios 28 

(0.7024–0.7030) than the recrystallized dolomite (0.7038–0.7097). The REE ores at Bayan 29 

Obo are interpreted to have originally formed as products of ~1.3Ga carbonatitic 30 

magmatism and undergone subsequent thermal perturbations induced by Sr-rich, but 31 

REE-poor metamorphic fluids derived from nearby sedimentary rocks. 32 

INTRODUCTION 33 

The rare earth elements (REE) have become the focus of international attention 34 

because of their industrial importance to the development of “low carbon” energy and 35 

transportation technologies, and because the global REE market is extremely sensitive to 36 

geopolitically driven supply limitations (Hatch, 2012). The availability of REE for future 37 

markets is a growing concern in the developed world because global demand for these 38 

resources is expected to grow significantly (Verplanck and Hitzman, 2016). China, the 39 

United States, Russia, Canada, Brazil, Australia, India and Malaysia account for the 40 

majority of the world’s REE reserves. China presently contains ~40% of the global REE 41 

resources (Weng et al., 2015), concentrated primarily in the world’s largest REE deposit at 42 

Bayan Obo. This deposit has attracted inordinate attention from researchers (over 100 43 

papers in peer-reviewed journals just in the past decade) because of its unparalleled 44 

endowment in REE (>100Mt REE2O3, Weng et al., 2015). The genesis of the Bayan Obo 45 
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structure and its resources has been the subject of debate for over 50 years. There is no 46 

consensus concerning either the age of mineralization (~1300 to ~400Ma; Yang et al., 47 

2017), or the number of mineralization stages (Chao, 1997). Genetic models proposed for 48 

Bayan Obo range from sedimentary deposition (Chao, 1997), to metasomatic reworking of 49 

metasedimentary marbles by carbonatitic (Smith et al., 1999) or subduction-derived fluids 50 

(Yang et al., 2017), to igneous processes related to carbonatite emplacement (Le Bas et al., 51 

2007). 52 

Monazite is one of the principal REE hosts in the Bayan Obo deposit. Here we 53 

report integrated, in situ, high-precision Th-Pb ages and Nd isotope ratios of monazite 54 

samples from an 1776 m long drill core section from the Bayan Obo deposit. The monazite 55 

data were combined with in situ apatite and dolomite isotope analyses to show that the 56 

Bayan Obo REE mineralization is of Mid-Mesoproterozoic age and of carbonatitic origin, 57 

and shows no evidence of any significant REE contribution from external sources. This 58 

Mid-Mesoproterozoic mineralization was subsequently modified by younger thermal 59 

events. 60 

GEOLOGY OF THE DEPOSIT AND SAMPLES 61 

The Bayan Obo deposit is located at the northern margin of the North China Craton 62 

(NCC). The basement comprises the Archean Wutai Group (gneisses and migmatites) and 63 

Proterozoic Bayan Obo Group. The latter has been subdivided into nine lithological units, 64 

conventionally referred to as H1-H9 in ascending chronological order. The Bayan Obo 65 

Group is composed predominantly of meta-sandstones and slates, except for the H8 66 

dolomite rock (Fig. DR1 in the GSA Data Repository
1
). Volcanic rocks of trachytic, dacitic 67 

and rhyolitic composition, as well as mafic dikes, have been found within the H9 group 68 
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(Zhang et al., 2003; Yang et al., 2011). The metamorphic clastic sequences of the Bayan 69 

Obo Group represent sedimentary units deposited within the Bayan Obo pericratonic rift. 70 

The REE deposit is hosted by the H8 dolomite rock, which extends for 18km laterally at a 71 

width of >1km, and occurs as a spindle-shaped stratiform body. About 100 carbonatite 72 

dikes are found adjacent to the deposit, intruding the Bayan Obo Group metasediments 73 

(Yang et al., 2011). The REE orebodies consist of disseminated, banded and massive ores, 74 

most of which are associated with dolomite, silicates (in particular, alkali clinopyroxene, 75 

amphibole and mica), apatite, fluorite and magnetite. 76 

The studied drill core was extracted from the Eastern orebody, within the H8 unit, 77 

and has a total length of 1776m. Compared to the H8 unit exposed at the surface, which 78 

underwent extensive metasomatic alteration and deformation, and contains abundant 79 

aegirine, riebeckite, phlogopite and late-stage fluorite-barite veins superposed over the 80 

primary mineral assemblage, the drill samples are relatively fresh. The examined rocks are 81 

composed predominantly of fine- to coarse-grained dolomite. Most of the dolomite is 82 

euhedral to subhedral, and shows evidence of recrystallization with the development of 83 

triple grain junctions. Some of the fine-grained, anhedral dolomites occur as a matrix to the 84 

porphyritic dolomites (Fig. DR2), defining a primary, igneous texture. The studied drill 85 

core shows significant variations in total light REE2O3 content, which locally reaches 86 

5.8wt.% (Fig. DR3; Table DR1; for methods, see Data Repository). Textural observations 87 

show that the early disseminated monazite was usually partially replaced and overgrown 88 

by bastnäsite and apatite (Fig. 1a). Late monazite occurs as monominerallic veinlets, or is 89 

associated with bastnäsite veinlets (Fig. 1b). Primary apatite was partially corroded and 90 

overgrown by a rim of monazite (Fig. 1c). Recrystallized apatite occurs as veinlets and 91 
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clusters with bastnäsite (Fig. 1d). The textural evolution of REE minerals indicates 92 

extensive metamorphic and metasomatic recrystallization (Smith et al., 1999). 93 

RESULTS 94 

The Th-Pb ages were combined with Nd isotopic ratio measurements done 95 

independently and in situ on the same monazite grains, to calculate the initial 96 

(143Nd/144Nd)i ratios at the time of formation (Tables DR2,3). These monazites show 97 

homogeneous internal textures (Fig. DR4), and have variable ages, ranging from 361 ± 98 

6–913 ± 15Ma. Their corresponding Nd(t) values fall between 6.9 and 18. However, all 99 

samples show similar TCHUR(Nd) model ages ranging from 1.56 to 1.67Ga, implying 100 

derivation from the same source. The inferred ore-forming events at Bayan Obo have been 101 

previously constrained chronologically on the basis of whole-rock and mineral 102 

assemblages from surface samples, which show a wide range of ages with distinct 103 

frequency peaks at ~1.3Ga and ~400Ma (Yang et al., 2017). However, the REE-rich 104 

carbonatite dikes adjacent to the orebodies give a consistent Mid-Mesoproterozoic age of 105 

ca. 1.3Ga (Fig. 2). The Sm-Nd isochron ages of volcanic rocks and mafic dikes in the 106 

Bayan Obo deposit are also close to 1.3Ga. Figure 2 shows the measured monazite ages  107 

plotted versus their corresponding Nd(t) values, and provides some of the previously 108 

reported Sm-Nd isochron ages and Nd(t) values for reference. Notably, the new and 109 

published data show a good correlation, indicating a single-stage Nd isotopic evolution 110 

from a single source. Late-stage, magma-derived melts or fluids could serve as a source of 111 

REE, but this model would require that the later-emplaced magmas had very low Nd 112 

isotopic ratios. This is clearly not the case: all reported Neoproterozoic to Carboniferous 113 

igneous rocks in the northern NCC plot above the Nd isotopic evolution line for Bayan 114 
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Obo (Fig. 2). Therefore, we infer that late-stage changes in the REE mineralization defined 115 

by this evolution line were due to remobilization of these elements from the already 116 

existing orebody of Mid-Mesoproterozoic age. This interpretation is supported by textural 117 

evidence, such as metasomatic replacement of early monazite and apatite accompanied by 118 

the development of new REE minerals (Fig. 1). The trace element and isotope data 119 

described below further support the interpretation of the timing of primary REE 120 

mineralization. 121 

The origin of the H8 dolomite rock hosting the deposit has been debated. The two 122 

“end-member” hypotheses are igneous crystallization from carbonatitic magma (Le Bas et 123 

al., 2007) and sedimentary deposition (Chao, 1997). Our Nd isotope evolution line is 124 

remarkably different from that characterizing typical sedimentary rocks from units H1-H3, 125 

in which the (143Nd/144Nd)i ratio, calculated from 1.3Ga to 400Ma, is markedly lower than 126 

in the REE minerals (Fig. 2). Both dolomite and apatite analyzed in this study show high Sr 127 

contents (Table DR4), typical of carbonatitic minerals (Hornig-Kjarsgaard, 1998). 128 

Different textural types of dolomite and apatite are characterized by distinct REE 129 

distribution patterns (Fig. 3). The primary dolomite shows relatively low REE content 130 

(La<10ppm) and a flat distribution pattern with (La/Yb)cn = 1–5. The recrystallized 131 

dolomite is characterized by a much more varied and higher REE content (La = 132 

16–109ppm) and stronger enrichment in light REE, with (La/Yb)cn = 8–32. The two 133 

generations also differ in their key REE ratios, i.e., the primary variety has higher Eu/Eu* 134 

and Y/Ho values relative to the recrystallized dolomite. Early disseminated apatite is 135 

significantly enriched in REE (La>1400ppm) and shows a higher Eu/Eu* but lower Y/Ho 136 

values than the paragenetically later generation confined to the veinlets (Fig. DR5). 137 
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The textural relations and extreme isotopic variability of the Bayan Obo monazite 138 

imply that it is a product of dissolution-reprecipitation processes and that its Th-Pb budget 139 

was modified over an extended period of time. The extended history of metasomatism at 140 

Bayan Obo is recorded in the monazite ages, spanning from 361 to 913Ma. The primary 141 

REE mineralization must have formed earlier than 913Ma and may have occurred ca. 142 

1.3Ga, as indicated by the Sm-Nd isochron ages of the ore-bearing H8 unit and spatially 143 

associated REE-enriched carbonatites (Fig. 2). These previously studied samples have 144 

initial Nd isotopic ratios similar to those of the monazite studied in the present work if 145 

calculated for 1.3Ga (Nd1.3Ga = 0.3 ± 0.6), implying a common mantle source. In situ Sr 146 

isotopic analysis of the primary dolomite and apatite also gave low 87Sr/86Sr values (Table 147 

DR5, 0.7024–0.7030), which are far less radiogenic than typical marine carbonates and 148 

further support a non-sedimentary origin (Fig. 3). However, the late generations of 149 

recrystallized dolomite have variable and high Sr isotopic compositions (0.7038–0.7097). 150 

The present-day Sr isotopic ratios measured in the primary dolomite and apatite are 151 

considered to approximate the initial 87Sr/86Sr values because these minerals contain high 152 

levels of Sr, but negligible Rb and thus, are characterized by very low Rb/Sr ratios. Similar 153 

initial Sr isotopes (0.7029–0.7030) have been reported from ~1.3Ga carbonatite dikes 154 

without contamination by feldspar from the wall rocks in Bayan Obo (Le Bas et al., 2007). 155 

DISCUSSION AND CONCLUSION 156 

A newly reported zircon age (1301 ± 12Ma) on REE-rich carbonatites at Bayan 157 

Obo supports the model of Mid-Mesoproterozoic primary mineralization (Zhang et al., 158 

2017). The 87Sr/86Sr ratios of primary dolomite and apatite are close to the Bulk Earth 159 

value (0.7029) at 1.3Ga. The Nd1.3Ga value of monazite is also close to the Chondritic 160 
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Uniform Reservoir value, implying that the ore-bearing dolomite rock may be derived 161 

from a primary, non-depleted mantle source, perhaps residing within the less-accessible 162 

parts of the mantle, or in the depleted lithospheric mantle modified by old subducted 163 

materials. Experiments show that primary carbonatitic melts derived from carbonated 164 

peridotites contain relatively low REE abundances (Foley et al., 2009) and must 165 

consequently undergo extensive fractionation in the crust to produce the level of REE 166 

enrichment. Initially low REE concentrations in carbonatitic magmas are typically 167 

dispersed among such major rock-forming constituents as calcite and apatite 168 

(Hornig-Kjarsgaard, 1998), preventing the development of REE mineralization. In 169 

contrast, primary carbonatitic magmas can be derived by partial melting of carbonated 170 

eclogites (Thomson et al., 2016). In the Trans-North China Orogen of the NCC (i.e., 171 

~300km southeast of Bayan Obo), several occurrences of Paleoproterozoic carbonatite 172 

dikes were found to contain high-pressure eclogite xenoliths of recycled crustal origin (Xu 173 

et al., 2017a). This discovery provides unambiguous evidence that subducted material is 174 

present in the mantle beneath the northern NCC. Seismic imaging of the NCC across the 175 

Trans-North China Orogen (Zheng et al., 2009) provides strong support to 176 

Paleoproterozoic (1.9–2.1Ga) westward subduction beneath the Western Block of the 177 

Craton at the time when it is inferred to have been part of the Columbia supercontinent. 178 

Numerous diabase dikes emplaced in the northern NCC (Fig. DR1) are considered to be 179 

related to the Mid-Mesoproterozoic breakup of Columbia (see Zhang et al., 2017). The 180 

mafic dikes in the northern NCC share geochemical characteristics of both ocean-island 181 

basalts and island-arc volcanic rocks, as can be seen in tectonic-setting-based 182 

discrimination diagrams (Fig. DR6). Geochemically, these dikes resemble basaltic 183 
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magmatism whose mantle source was influenced by previous subduction events, and are 184 

distinctly different from purely intraplate volcanic rocks in the NCC. In particular, the 185 

Bayan Obo mafic dikes and volcanic rocks in unit H9 show consistent negative Nb, Ta and 186 

Ti anomalies (normalized to the primary mantle values), and are compositionally similar to 187 

arc basalts (Fig. DR7). Crustal contamination as a source of these geochemical deviations 188 

can be ruled out because the mafic dikes in the northern NCC show a consistent Nd 189 

isotopic signature (Nd1.3Ga = -0.5–1.9; Yang et al., 2011). Therefore, we consider that 190 

subduction modification pre-conditioned the mantle source to generate the Bayan Obo 191 

carbonatite REE deposit. 192 

Our mineralogical and geochemical results suggest that the primary REE 193 

mineralization at Bayan Obo was modified by externally derived fluids, which involved 194 

the development of superimposed mineralization and recrystallization of the primary 195 

minerals. The metasomatic fluids contain a crustal component, as indicated by a negative 196 

shift in Eu/Eu* value and higher 87Sr/86Sr ratios in the recrystallized dolomite and apatite 197 

(Fig. 3, Fig. DR5). The Y/Ho trends exhibited by dolomite and apatite are mutually 198 

complementary, indicating structural controls over Y versus Ho partitioning between 199 

crystals and the fluids, whereas both minerals show depletion in Eu with recrystallization. 200 

The C-O isotope data from the deposit also show a large variation and plot between mantle 201 

and sediment fields (Yang et al., 2017). Moreover, the fluids must have been poor in REE, 202 

but rich in Sr to explain the positive 87Sr/86Sr excursion. Caledonian subducted 203 

slab-derived fluids, as proposed by Yang et al. (2017), are unlikely to be responsible for the 204 

observed geochemical trends, because such fluids would be expected to have radiogenic 205 

Nd isotopes (Xu et al., 2017b). Their interaction with the H8 unit would inevitably modify 206 
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its Nd isotopic signature, causing deviation of monazite Nd(t) values from the continuous 207 

evolutionary line shown in Figure 2. Moreover, the Neoproterozoic to Carboniferous 208 

magmatism in the northern NCC could not provide fluids sufficiently depleted in 209 

radiogenic Nd to explain the low negative Nd(t) values of young Bayan Obo monazite 210 

generations. The sedimentary rocks present in the sequence at Bayan Obo are a viable 211 

alternative source of metasomatizing fluids. These rocks show elevated Sr levels (up to 212 

580ppm) coupled with a strongly radiogenic Sr isotopic signature 213 

(87Sr/86Sr(985Ma)=0.7147), but are poor in REE (Zhang et al., 2003), and may have 214 

contributed this signature to the post-ore metasomatic fluids involved in dolomite and 215 

apatite recrystallization. These sedimentary rocks underwent metamorphism to various 216 

degrees (from greenschist to low amphibolites facies conditions) and could serve as a 217 

persistent fluid source responsible for textural and geochemical changes in the H8 218 

dolomite rock. 219 

In conclusion, our interpretation of the isotopic and trace element characteristics of 220 

monazite, dolomite and apatite support the derivation of primary REE from a 221 

Mid-Mesoproterozoic carbonatitic source. The apparent discrepancy in the behavior of Sr 222 

and Nd isotopes highlights the importance of multi-systemic approach to geologically 223 

complex mineral deposits, and reflects a protracted history of metasomatism induced by 224 

Sr-rich, REE-poor fluids. In a similar case, the Nolans Bore REE deposit in Australia has 225 

been found to have experienced multiple episodes of recrystallization/internal reworking 226 

over a period of at least 1 billion years after primary ore formation (Schoneveld et al., 227 

2015). The resetting of the ore system may be common in most REE deposits, and may be 228 

critical in the high grade of some deposits. Interpreting geochronological results from the 229 
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REE orebodies should be undertaken with caution. However, with the utilization of 230 

petrographic constrained analyses, recrystallization processes may be related to regional 231 

tectonic events, and therefore complex REE orebodies could be used to unravel their 232 

tectonic evolution. 233 
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 304 

FIGURE CAPTIONS 305 

 306 

Figure 1. Back-scattered-electron images showing the characteristic mineral assemblages 307 

and textures observed in the Bayan Obo drill core. Dol, dolomite; Mnz, monazite; Ap, 308 

apatite; Bas, bastnäsite; Mag, magnetite. 309 

 310 

Figure 2. Trend of Nd isotopic evolution of Bayan Obo monazite with age compared to 311 

other relevant isotopic data. The dashed line is the trend line of the monazite and can be 312 

extended to 1.3Ga, where the Nd(t) value is close to zero and similar to the Nd(t) values 313 

of the H8 unit (Zhang et al., 2003; Zhu et al., 2015; Yang et al., 2017), mafic dikes (Yang 314 

et al., 2011) and volcanic rocks (Zhang et al., 2003) within the H9 unit, and carbonatite 315 

dikes adjacent to the deposit (Zhang et al., 2003; Le Bas et al., 2007; Yang et al., 2011). 316 

Data for sedimentary rocks (Zhang et al., 2003) from Bayan Obo and igneous rocks (Shao 317 

et al., 2002) from the northern NCC are plotted. 318 

 319 
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Figure 3. Chondrite-normalized REE patterns and 87Sr/86Sr ratios of dolomite and apatite 320 

from the drill core. Average REE abundances were used with error bars of one standard 321 

deviation. 322 
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W. Song, C. Xu*, M.P. Smith, A.R. Chakhmouradian, M. Brenna, J. Kynický, W. 2 

Chen, Y. Yang, M. Deng, and H. Tang, 2018, Genesis of the world’s largest 3 

rare earth element deposit, Bayan Obo, China: protracted mineralization 4 

evolution over ~1 billion years: Geology 5 

 6 

Analytical Methods 7 

Whole-rock analysis  8 

Major and rare earth element abundances in drill core samples were 9 

determined by a Spectro Blue Sop inductively coupled plasma optical emission 10 

spectrometer (ICP-OES) at the School of Earth and Space Sciences, Peking 11 

University. The analytical precision is ±5% for all the elements. 12 

 13 

Element mapping  14 

Compositional X-ray maps of monazites were obtained with an Oxford 15 

INCA X-MAX50 250+, energy dispersive X-ray spectrometer installed on a FEI 16 

Quanta-650FEG scanning electron microscope, at the School of Earth and 17 

Space Sciences, Peking University. The backscattered electron and 18 

energy-dispersive X-ray data acquired from the samples were combined and 19 

processed automatically to generate the most sensitive X-ray mapping. The 20 

sample, coated with a conductive Cr layer (10 nm thickness) to prevent sample 21 

charging, was analyzed in a high-vacuum mode at standard operating 22 
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conditions (accelerating voltage of 20 kV, probe current 5 nA). 1 

 2 

Monazite dating  3 

Monazite grains ranging from 50 to 100 μm across were collected from the 4 

drill core using conventional heavy liquid separation techniques. 5 

Back-scattered electron images show that the crystals are compositionally 6 

homogeneous and free of inclusions. The Th-Pb dating of monazite was 7 

performed using a Cameca IMS-1280 secondary-ion mass-spectrometer 8 

(SIMS) at the Institute of Geology and Geophysics (IGG), Chinese Academy of 9 

Sciences (CAS). During the analysis, an O2- primary ion beam was 10 

accelerated at 13 kV with an intensity of ca. 2-3 nA. Aperture illumination mode 11 

(Kohler illumination) was used with a 200-μm primary beam mass filter 12 

aperture to produce even sputtering over the entire analyzed area. The 13 

ellipsoidal spot was about 20 × 30 μm in size. Positive secondary ions were 14 

extracted with a 10 kV potential. Monazite 44069 was used as a standard. A 15 

207Pb-based common Pb correction method was used. Further instrumental 16 

and analytical details can be found in Li et al. (2013). 17 

 18 

Trace element analysis  19 

In-situ laser-ablation analyses of dolomite and apatite in thin sections were 20 

performed by inductively-coupled-plasma mass-spectrometry (ICP-MS) at the 21 

School of Earth and Space Sciences, Peking University, using a COMPexPro 22 
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102 excimer laser and an Agilent7500ce/cs mass-spectrometer. The diameter 1 

of an ablation spot was 32 μm. The NIST 610 glass was used as a calibration 2 

standard, and the Ca content measured by electron-microprobe analysis, as 3 

an internal standard. Signal intensity for indicative trace elements was 4 

monitored online during the analysis to ensure that the ablation spot was 5 

confined to the area of interest and did not sample other mineral phases or 6 

inclusions. The analytical error was estimated to be better than 5% at the ppm 7 

level.  8 

 9 

Nd-Sr isotopic analysis  10 

The Nd isotopic composition of monazite was measured in situ by 11 

multi-collector ICP-MS using a Thermo-Finnigan Neptune instrument coupled 12 

to a 193-nm ArF excimer laser-ablation system at the IGG, CAS. The diameter 13 

of a laser spot and frequency were adjusted to between 10-24 μm and 4-10 Hz, 14 

respectively, depending on the Nd concentration in the sample. Each spot 15 

analysis consisted of approximately 60 s of signal acquisition. More detailed 16 

information on the in-situ Nd isotopic analysis employed in the present work is 17 

available in Yang et al. (2008). The Sr isotopic compositions of dolomite and 18 

apatite were measured in situ by laser-ablation multicollector ICP-MS 19 

(Resonics + Nu instruments) at the State Key Laboratory of Geological 20 

Processes and Mineral Resources, China University of Geosciences (Wuhan). 21 

The isotopic ratios were quantified in a static multicollector mode at low 22 
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resolution, using seven Faraday collectors and a mass configuration array 1 

from 82Kr to 88Sr to monitor variations in Kr, Rb and Sr signals. The detailed 2 

analytical procedure and data-reduction strategy are described in Tong et al. 3 

(2015). 4 

 5 

Figure captions for Data Repository 6 

Figure DR1. Geological sketch map of the Bayan Obo deposit. a: The 7 

locations of Bayan Obo and ~1.3 Ga mafic dikes in the northern North China 8 

Craton (NCC; Yang et al., 2011; Zhang et al., 2012; Wang et al., 2014); b: The 9 

locations of drill core, carbonatite and mafic dikes in Bayan Obo. 10 

Figure DR2. Drill core samples and their photomicrographs. a, b: Drill cores 11 

collected from the Eastern Orebody at a depth of 1776 m. c: Photomicrograph 12 

of dolomite (Dol) showing re-crystallization texture with the development of 13 

elongation and preferred orientation, and triple junctions between crystals. 14 

Rare earth minerals (REM) of monazite and REE-fluorocarbonates occur as 15 

veinlets. d: Photomicrograph of primary fine-grained dolomite as a matrix to 16 

porphyritic dolomite. Disseminated REM is associated with fluorite (Fl).  17 

Figure DR3. Plot showing the total light REE2O3 contents (La-Sm) of the drill 18 

core samples with vertical depth. 19 

Figure DR4. X-ray compositional maps of representative monazite grains. 20 

Figure DR5. Compositional variation of primary and recrystallized dolomite 21 

(Dol) and apatite (Ap) from the Bayan Obo drill cores. a: La/Ybcn (cn - 22 

http://www.sciencedirect.com/science/article/pii/S0024493715004624#bb0390
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chondrite normalized) vs. total REE; b: Y/Ho vs. Eu/Eu* (Eu anomaly). 1 

Figure DR6. Revised tectonic discrimination diagrams for mafic dikes from the 2 

northern NCC. Data of the Wulahada and Wudalianchi volcanic fields in NCC 3 

are plotted as reference for cases of basaltic magmatism with the source 4 

influenced by previous subduction events (Wulahada at 142 Ma; Zhang et al., 5 

2003) and for purely intraplate (OIB-like) volcanism from an enriched source 6 

(Wudalianchi at 10 Ma to recent; Zhang et al., 1995). The 7 

Mid-Mesoproterozoic mafic dikes (Zhang et al., 2012; Wang et al., 2014) in 8 

northern NCC plot in both IAB and OIB, and Bayan Obo data (Wang et al., 9 

2003; Yang et al., 2011) mostly in the IAB field, indicating influence of 10 

subduction derived fluids in their mantle source. The tectonic discrimination 11 

diagrams are from Vermeesch (2006). OIB, Ocean Island Basalt; IAB, Island 12 

Arc Basalt; MORB, Middle Ocean Ridge Basalt.  13 

Figure DR7. Primitive mantle normalized diagram for mafic dikes from the 14 

northern NCC. Data of OIB is from Sun and McDonough (1989), IAB based on 15 

average compositions reported by Jakes and Gill (1970), McCulloch and 16 

Gamble, (1991), and with dashed Ta abundance based on the Nb/Ta ratios 17 

reported by Stolz et al. (1996). Additional data sources are same as Fig. DR6. 18 

Note that the Bayan Obo mafic rocks have Nb, Ta and Ti negative anomalies 19 

and Pb and Sr positive anomalies resembling IAB, and have mostly lower 20 

elemental abundances than OIB, suggesting a subduction influence in their 21 

genesis. 22 
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Table DR1. Chemical compositions (wt.%) in Bayan Obo drill cores with different depths  

Depth(m) TiO2 Al2O3 FeO MgO CaO MnO Na2O K2O P2O5 BaO SrO La2O3 Ce2O3 Pr2O3 Nd2O3 Sm2O3 

392 0.03  0.06  17.20  13.53  30.91  4.30  0.08  0.04  0.04  0.07  0.26  0.67  1.67  0.21  0.68  0.06  

520 0.06  0.03  6.55  18.65  32.03  1.77  0.07  0.02  0.23  0.44  0.52  0.36  0.69  0.08  0.24  0.02  

1048 0.08  0.98  12.23  13.44  24.58  2.35  1.81  1.72  0.31  0.05  0.63  0.93  2.07  0.20  0.47  0.03  

1080 0.05  1.59  7.69  13.89  27.33  2.72  0.04  1.89  1.85  0.20  0.23  0.59  1.55  0.22  0.84  0.09  

1336 0.04  0.14  7.74  14.62  31.25  2.60  0.08  0.06  1.97  0.99  0.31  0.57  1.05  0.12  0.37  0.03  

1336 0.04  0.06  7.74  14.62  31.25  1.76  0.08  0.01  2.54  0.15  0.46  0.56  1.10  0.13  0.46  0.05  

1402 0.02  0.07  5.36  14.37  32.16  1.84  0.03  0.03  3.07  0.06  0.19  1.26  1.81  0.17  0.45  0.04  

1410 0.02  0.07  8.48  17.69  34.62  2.29  0.03  0.02  1.36  0.04  0.17  0.67  1.25  0.13  0.40  0.04  

1461 0.06  0.06  8.38  17.22  33.60  1.74  0.07  0.02  0.63  0.03  0.81  1.79  2.85  0.28  0.74  0.06  

1480 0.05  0.10  7.47  12.17  29.23  1.51  0.05  0.02  5.86  0.13  0.49  0.75  1.41  0.16  0.50  0.06  

1502 0.06  0.09  7.95  12.92  29.40  1.47  0.03  0.01  2.35  0.15  0.47  1.62  2.61  0.27  0.81  0.08  

1532 0.03  0.05  7.65  13.67  27.45  1.47  0.03  0.01  0.36  0.59  0.26  0.33  0.58  0.06  0.19  0.02  

1574 0.05  0.04  8.36  16.55  29.48  1.93  0.02  0.01  0.12  1.30  0.35  1.12  1.82  0.19  0.53  0.05  

1588 0.36  0.35  13.48  15.07  27.19  2.33  0.06  0.32  1.90  1.86  0.49  0.65  1.41  0.17  0.51  0.05  

1612 0.06  0.09  6.52  16.30  38.86  1.32  0.04  0.05  3.34  0.49  0.39  2.00  2.78  0.27  0.69  0.06  

1627 0.25  0.26  13.53  14.76  26.04  2.15  0.03  0.29  1.43  0.22  0.30  0.93  1.56  0.16  0.42  0.04  

1641 0.02  0.08  11.30  15.65  28.88  2.38  0.05  0.01  0.63  0.18  0.16  0.29  0.55  0.06  0.19  0.02  

1649 0.05  0.71  6.69  11.81  36.17  2.08  0.08  0.34  2.14  0.24  0.23  1.08  1.57  0.15  0.38  0.04  

1676 0.02  0.07  8.67  14.67  30.31  1.66  0.28  0.10  0.19  0.39  0.57  1.14  1.81  0.17  0.42  0.03  

1683 0.06  0.29  6.81  15.30  25.16  1.73  0.30  0.46  2.09  0.53  0.81  1.67  2.46  0.24  0.65  0.05  

1692 0.06  0.21  7.40  17.60  27.45  1.48  0.10  0.40  0.75  0.99  0.83  0.91  1.70  0.17  0.44  0.04  

1740 0.04  0.12  10.55  15.58  28.96  1.54  0.25  0.25  0.05  1.10  0.50  0.52  0.99  0.11  0.36  0.03  

1765 0.13  0.08  9.40  12.52  35.01  1.47  0.08  0.06  2.43  0.06  0.25  1.12  2.41  0.26  0.71  0.06  

1776 0.03  0.03  6.71  14.40  34.55  1.30  0.11  0.02  1.64  0.62  0.24  0.91  1.52  0.16  0.46  0.04  

 

 



Table DR2. Monazite dating data from the drill cores in Bayan Obo 

sample Th(ppm) U(ppm) Th/U 
208

Pb/
232

Th 
σ 

Pb/Th age(Ma) 
σ 

BO-1 2308  3.57  646  0.0462  1.7  913  15  

BO-2 4197  1.03  4080  0.0438  1.7  866  14  

BO-3 2506  3.04  825  0.0415  1.9  822  16  

BO-4 1841  2.19  839  0.0410  1.6  811  13  

BO-5 2138  2.93  729  0.0401  1.6  795  13  

BO-6 2056  2.60  792  0.0400  1.7  792  13  

BO-7 1987  2.32  858  0.0377  1.6  748  12  

BO-8 2889  2.08  1389  0.0333  1.8  662  12  

BO-9 1783  2.19  815  0.0318  1.9  633  12  

BO-10 1436  0.97  1488  0.0288  1.9  573  11  

BO-11 2294  2.56  897  0.0285  1.6  569  9  

BO-12 1551  1.71  907  0.0280  2.5  558  14  

BO-13 1302  2.55  511  0.0266  1.6  530  9  

BO-14 3134  1.58  1979  0.0259  1.6  517  8  

BO-15 4817  1.32  3643  0.0224  2.2  448  10  

BO-16 2654  <0.1 >10000 0.0206  1.6  413  7  

BO-17 2407  <0.1 >10000 0.0206  1.7  413  7  

BO-18 2230  <0.1 >10000 0.0206  2.0  411  8  

BO-19 2934  <0.1 >10000 0.0205  1.8  410  7  

BO-20 2307  <0.1 >10000 0.0204  1.8  408  8  

BO-21 1709  1.68  1015  0.0203  1.6  406  7  

BO-22 3272  1.42  2312  0.0197  1.8  394  7  

BO-23 1482  1.83  812  0.0185  1.7  370  6  

BO-24 1530  1.30  1177  0.0180  1.6  361  6  

 

 

 

 

 

 

 

 

 

 

 

 



 

Table DR3. In-situ Nd isotope of monazites from Bayan Obo drill cores 

sample 147Sm/144Nd 2σ 143Nd/144Nd 2σ age (Ma) εNd (t)
# 

TCHUR(Ga) 

BO-1 0.04239 2 0.511362 19 913 -6.9 1.59 

BO-2 0.04607 5 0.511358 32 866 -8.3 1.63 

BO-3 0.04606 2 0.511319 22 822 -9.9 1.66 

BO-4 0.04487 4 0.511348 23 811 -9.4 1.62 

BO-5 0.04645 4 0.511316 27 795 -10.5 1.67 

BO-6 0.04651 5 0.511348 22 792 -10.0 1.64 

BO-7rim 0.04363 8 0.511309 37 748 -11.3 1.65 

BO-7rim 0.04320 4 0.511305 39 748 -11.3 1.65 

BO-7core 0.04349 6 0.511318 41 748 -11.1 1.64 

BO-7core 0.04633 4 0.511377 25 748 -10.2 1.61 

BO-8 0.04561 7 0.511372 22 662 -11.9 1.61 

BO-9 0.04394 2 0.511346 20 633 -12.9 1.62 

BO-10 0.04507 14 0.511353 25 573 -14.0 1.62 

BO-11 0.04652 3 0.511346 21 569 -14.3 1.64 

BO-12 0.04497 4 0.511339 19 558 -14.5 1.63 

BO-13 0.04375 3 0.511345 24 530 -14.9 1.62 

BO-14 0.04410 10 0.511341 34 517 -15.2 1.62 

BO-15rim 0.03962 8 0.511283 38 448 -17.5 1.63 

BO-15core 0.04118 6 0.511326 14 448 -16.7 1.61 

BO-16 0.03988 3 0.511342 26 413 -17.0 1.58 

BO-17 0.03938 2 0.511365 25 413 -16.5 1.56 

BO-18 0.03588 9 0.511334 27 411 -17.0 1.55 

BO-19 0.04002 11 0.511355 27 410 -16.8 1.57 

BO-20 0.03950 4 0.511360 23 408 -16.8 1.56 

BO-21 0.04533 3 0.511362 33 406 -17.1 1.62 

BO-22 0.04763 20 0.511361 24 394 -17.4 1.64 

BO-23 0.04527 3 0.511351 27 370 -18.0 1.62 

BO-24core 0.04619 7 0.511377 22 361 -17.7 1.61 

BO-24rim 0.04616 2 0.511376 23 361 -17.7 1.61 
#
εNd (t) values are calculated based on present-day (

147
Sm/

143
Nd)CHUR = 0.1967 and (

143
Nd/

144
Nd)CHUR = 0.512638. 

 



Table DR4. In-situ trace element compositions (ppm) of dolomite and apatite from Bayan Obo drill cores 

dolomite 
     

primary 
 

      
recrystallization 

Rb 0.05 bdl
# 

bdl bdl bdl bdl bdl bdl 0.09  bdl bdl 0.01 0.01 0.02 0.01 0.03 0.04 

Sr 1766 1528 1818 2228 2174 2559 2671 2429 1197  2640 2738 4294 4513 4378 4559 4451 4289 

Ba 67.5 9.34 86.1 13.4 133 124 561 90.1 106  69.4 39.5 43.5 61.6 58.3 33.6 56.0 55.5 

Y 23.3 28.8 25 27.9 17.3 13.0 19.3 9.31 23.1  31.5 29.6 56.2 58.3 65.3 105.8 78.4 62.0 

La 7.18 3.59 9.17 4.92 5.25 5.06 9.63 3.61 15.5  65.7 27.4 36.6 36.6 56.5 109 101 73.8 

Ce 25.2 14.0 25.9 17.3 11.2 10.4 19.6 7.69 54.8  162 62.0 128 136 192 362 314 234 

Pr 3.83 2.16 3.65 2.58 1.39 1.16 2.36 0.93 7.50  15.1 7.50 17.8 19.6 26.3 51.8 43.1 31.4 

Nd 16.9 11.3 16.6 13.4 5.93 5.9 11.4 4.46 32.4  65.3 33.6 77.4 85.2 112 222 184 136 

Sm 5.03 3.37 4.10 3.94 1.52 2.67 4.69 1.81 6.54  17.1 8.94 17.9 20.4 24.8 47.3 37.0 28.4 

Eu 2.03 1.60 1.99 1.71 0.73 1.15 1.79 0.84 2.47  6.35 3.36 6.52 7.67 8.64 16.3 12.5 9.60 

Gd 3.99 3.48 4.12 3.73 1.75 2.46 4.45 2.44 4.79  14.5 7.22 15.3 17.5 19.6 36.8 28.1 21.7 

Tb 0.90 0.81 0.76 0.69 0.42 0.41 0.95 0.40 0.85  2.24 1.30 2.84 3.38 3.68 6.45 5.0 3.92 

Dy 5.61 6.23 5.31 5.16 2.82 2.86 4.75 2.26 5.17  10.3 6.85 16.2 18.1 20.1 33.7 26.1 20.1 

Ho 1.16 1.32 1.23 1.24 0.79 0.53 0.92 0.36 0.90  1.69 1.28 2.8 3.0 3.38 5.5 4.11 3.23 

Er 2.89 4.08 3.17 3.37 1.95 1.30 1.89 0.78 2.37  3.07 3.35 5.41 5.72 6.43 10.1 7.40 5.52 

Tm 0.35 0.61 0.43 0.38 0.40 0.17 0.23 0.10 0.25  0.32 0.39 0.55 0.53 0.58 0.87 0.64 0.55 

Yb 2.01 3.31 2.74 2.03 2.31 0.79 1.17 0.53 1.38  1.39 2.0 2.18 2.18 2.50 3.75 2.90 2.24 

Lu 0.20 0.39 0.22 0.17 0.29 0.11 0.14 0.04 0.17  0.12 0.22 0.18 0.20 0.23 0.32 0.21 0.21 

 
Table DR4. continued 

apatite 
   

primary 
    

  recrystallization 

Rb 0.14 1.40 0.26 0.26 3.01 0.10 0.08 0.04 0.12 0.14 0.12 0.48 0.18 

Sr 5109 4026 5006 4586 3982 2834 2663 2956 2942 2364 3257 3255 3223 

Ba 22.9 22.7 62.4 35.3 17 83 94 133 204 78.2 64.3 66.7 223 

Y 1356 1153 1246 1193 1107 128 102 121 116 144 183 212 119 



La 2133 1598 1918 1553 1412 158 157 202 241 564 495 846 339 

Ce 7601 5809 6852 5646 6075 585 525 684 779 1505 1387 2372 1114 

Pr 1188 937 1035 912 1004 96.7 82 104 109 228 187 335 146 

Nd 5830 4406 4954 4553 5151 500 405 516 517 982 827 1394 647 

Sm 1227 902 1051 947 1059 106 88.4 103 100 161 144 208 116 

Eu 338 251 287 265 278 26.0 21.3 25.5 24.8 37.2 35.9 49.2 27.1 

Gd 800 620 714 675 680 61.6 52.8 61.7 60.6 89.5 85.2 116 67.8 

Tb 102 76.6 90.0 83.5 78.7 6.75 5.6 6.55 6.05 8.35 9.24 11.5 7.06 

Dy 497 376 451 417 377 36.3 29.3 34.2 31.9 40.9 49.4 58.2 33.5 

Ho 72.3 54.7 65.9 61.6 53.6 5.79 4.68 5.85 5.38 6.51 8.17 9.48 5.47 

Er 132 102 124 118 99.9 13.8 10.7 12.8 12.4 14.7 19.0 22.5 12.1 

Tm 11.1 8.50 10.3 9.92 8.02 1.45 1.07 1.37 1.42 1.53 1.94 2.19 1.21 

Yb 38.9 30.3 37.1 36.8 28.9 6.76 5.25 6.1 6.95 7.24 8.45 10.3 5.89 

Lu 3.07 2.40 2.98 3.03 2.35 0.63 0.50 0.61 0.79 0.70 0.78 0.99 0.58 

#below determination limits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table DR5. In-situ Sr isotope of dolomite and apatite from Bayan Obo drill cores 

 dolomite    apatite 
  

primary  recrystallization primary  recrystallization 

87Sr/86Sr  2σ  87Sr/86Sr  2σ  87Sr/86Sr  2σ  87Sr/86Sr  2σ  

0.70250  25 0.70606  33 0.70296  19 0.70351  8 

0.70241  20 0.70669  67 0.70294  17 0.70323  19 

0.70238  22 0.70384  22 0.70293  23 0.70345  13 

0.70271  12 0.70946  53 0.70297  19 0.70349  7 

0.70293  16 0.70760  81 0.70297  34 0.70357  16 

0.70287  9 0.70456  35 
  

0.70357  18 

0.70290  14 0.70786  50 
  

0.70367  11 

0.70280  9 0.70682  21 
  

0.70347  14 

0.70297  10 0.70572  10 
  

0.70347  12 

0.70284  14 0.70971  19 
  

0.70364  18 

0.70290  9 0.70889  10 
  

0.70341  13 

0.70289  4 0.70871  17 
  

0.70354  13 

0.70281  9 0.70533  14 
    

0.70282  5 0.70568  23 
    

0.70295  8 0.70827  26 
    

0.70294  3 0.70718  35 
    

0.70285  7 0.70467  11 
    

0.70279  4 
      

 




