229 research outputs found

    Le vieillissement chronologique de Schizosaccharomyces pombe : Implication des voies de détection du glucose

    Get PDF
    La premiĂšre augmentation de la longĂ©vitĂ© en laboratoire fĂ»t observĂ©e Ă  la suite d’une intervention nutritionnelle consistant en une rĂ©duction de l’apport alimentaire chez le rat. Plus tard, ce phĂ©nomĂšne a Ă©tĂ© reproduit dans de trĂšs nombreuses espĂšces et rĂ©fĂ©rĂ© en tant que restriction calorique. Le dĂ©veloppement des techniques de biologie molĂ©culaire moderne a permis de montrer dans des organismes modĂšles simples que cette flexibilitĂ© du processus de vieillissement Ă©tait rĂ©gulĂ©e par des facteurs gĂ©nĂ©tiques. De fait, plusieurs mĂ©canismes cellulaires ont alors pu ĂȘtre identifiĂ©s comme responsables de ce contrĂŽle du vieillissement. Ces voies de rĂ©gulation ont rĂ©vĂ©lĂ©es ĂȘtre conservĂ©es entre les espĂšces, depuis les levures jusqu’aux organismes multicellulaires tels que le nĂ©matode, la mouche ou la souris, suggĂ©rant l’existence d’un programme universel de vieillissement dans le vivant. La levure s’est avĂ©rĂ© Ă  plusieurs reprises ĂȘtre un modĂšle puissant et fiable pour la dĂ©couverte de gĂšnes impliquĂ©s dans ce phĂ©nomĂšne. Mon Ă©tude a consistĂ© au dĂ©veloppement d’un nouveau modĂšle unicellulaire d’étude du vieillissement Ă  travers l’espĂšce Schizosaccharomyces pombe appelĂ©e aussi levure Ă  fission. La premiĂšre Ă©tape de mon travail a montrĂ© que les voies de dĂ©tection des nutriments gouvernĂ©es par la sĂ©rine/thrĂ©onine protĂ©ine kinase A (Pka1) et la sĂ©rine/thrĂ©onine kinase Sck2 contrĂŽlent le vieillissement chronologique de ces cellules comme il Ă©tait connu dans la levure Saccharomyces cerevisiae. Ceci permit de valider l’utilisation de la levure Ă  fission pour l’étude du vieillissement. Ensuite, nous avons analysĂ© plus en dĂ©tail l’effet pro-vieillissement du glucose en Ă©tudiant le rĂŽle de sa dĂ©tection par le rĂ©cepteur membranaire Git3 couplĂ© Ă  la protĂ©ine G (Gpa2) en amont de la kinase Pka1. La perte du signal du glucose par la dĂ©lĂ©tion de Git3 imite partiellement l’effet d’augmentation de longĂ©vitĂ© obtenu par baisse de la concentration en glucose dans le milieu. De plus, l’effet nĂ©faste du signal du glucose est maintenu en absence de tout mĂ©tabolisme du glucose suite Ă  la mutation des hexokinases, premiĂšres enzymes de la glycolyse. L’ensemble de ces rĂ©sultats suggĂšrent que la signalisation du glucose est prĂ©dominante sur son mĂ©tabolisme pour son effet pro-vieillissement. D’autre part, Ă  la fois la suppression de cette signalisation et la baisse de niveau de glucose disponible allongent la durĂ©e de vie en corrĂ©lation avec une augmentation de la rĂ©sistance au stress, une hausse d’activitĂ© mitochondriale et une baisse de production de radicaux libres. Finalement, le criblage d’une banque de surexpression d’ADNc a permis d’identifier plusieurs gĂšnes candidats responsables de ces effets en aval de la voie de signalisation Git3/PKA. La recherche sur les mĂ©canismes molĂ©culaires du vieillissement propose une nouvelle approche, un nouvel angle de vue, pour la comprĂ©hension des fonctions cellulaires et promet d’apporter de prĂ©cieuses clefs pour mieux comprendre certaines maladies. En effet, le vieillissement est la premiĂšre cause d’apparition de nombreuses affections comme les cancers, les maladies cardiovasculaires et mĂ©taboliques ou les maladies neurodĂ©gĂ©nĂ©ratives tels que les syndromes d’Alzheimer et de Parkinson.The first increase in life span due to man’s intervention was obtained with rats subjected to a diet reduced in calorie intake. Later, this phenomenon was repeated with many other species and referred as diet restriction or calorie restriction. The development of modern Molecular Biology approaches and the use of simple model organisms demonstrated that the rate of aging was regulated by genetic traits. Indeed, several cellular mechanisms were identified as responsible for the control of aging. These regulatory pathways appear to be conserved throughout species, from yeast to multicellular organisms like nematode, fly and mice, thus suggesting the existence of a universal program of aging. Yeast proved several times to be a powerful and reliable model for discovering genes involved in the regulation of aging. My study consisted in developing Schizosaccharomyces pombe (also called fission yeast) as a new unicellular model to study aging. The first step of my work was to show that pathways of nutrient detection through kinases involving Pka1 and Sck2 control chronological aging in S. pombe, as it was previously demonstrated in Saccharomyces cerevisiae. This first work validated the use of fission yeast for the study of aging. Subsequently, we analysed in more detail the pro-aging effect of glucose focusing on the role of its signalling through the G-protein Gpa2-coupled membrane receptor Git3, which acts upstream of Pka1. The loss of the glucose signal due to deletion of Git3 mimics partially the effect of increasing longevity by reducing glucose in the medium. Moreover, detrimental effects of glucose signal are maintained in absence of sugar metabolism following loss of hexokinases, the first enzymes of glycolysis. Together, these results suggest that the pro-aging effects of glucose signalling are predominant over those due to metabolism of this sugar. Moreover, both obliteration of this signalling pathway and decrease of glucose availability extend life span, and correlate with an increase in stress resistance, in mitochondrial activity and a lower production of free radicals. Finally, screening a cDNA-overexpression library allowed us to identify several genes candidates responsible for the effects on longevity downstream of Git3/Pka1. Research in the molecular mechanisms of aging propose holds the promise to bring precious clues as to this mysterious processes affecting all living creatures, and paves the way to unravel the underlying causes of many human diseases. Indeed, aging is the first cause of numerous late-onset pathologies including cancers, cardiovascular diseases or neurodegenerative diseases like Alzheimer and Parkinson syndromes

    A screen for genes involved in respiration control and longevity in Schizosaccharomyces pombe

    Get PDF
    We present results showing that glucose signaling has proaging effects in the yeast Schizosaccharomyces pombe. Deletion of the receptor that senses extracellular glucose (Git3) increases the life span of S. pombe, while constitutive activation of the Gα subunit acting downstream of this receptor (Gpa2) shortens its life span. The latter mutant is also impaired for growth under respiration conditions. We have used this phenotype in a selection strategy to identify genes that when overexpressed can rescue the respiratory defect of constitutively active Gα subunit mutants. Here, we report an extended version of the work we presented at the IABG meeting and the results of this screen. This strategy allowed us to isolate four genes: psp1 + /moc1 + , cka1 + , adh1 + , and rpb10 + . Interestingly, the overexpression of these genes was also capable of increasing the chronological life span of wild-type yeast cells

    LUNEX5: A French FEL Test Facility Light Source Proposal

    Get PDF
    http://accelconf.web.cern.ch/AccelConf/IPAC2012/papers/tuppp005.pdfInternational audienceLUNEX5 is a new Free Electron Laser (FEL) source project aimed at delivering short and coherent X-ray pulses to probe ultrafast phenomena at the femto-second scale, to investigate extremely low density samples as well as to image individual nm scale objects

    The LUNEX5 project

    Get PDF
    http://accelconf.web.cern.ch/AccelConf/FEL2012/papers/froa03.pdfInternational audienceLUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation) aims at investigating the production of short, intense, and coherent pulses in the soft X-ray region. The project consists of a Free Electron Laser (FEL) line enabling the most advanced seeding configurations: High order Harmonic in Gas (HHG) seeding and Echo Enable Harmonic Generation (EEHG) with in-vacuum (potentially cryogenic) undulators of 15 and 30 mm period. Two accelerator types feed this FEL line : a 400 MeV Conventional Linear Accelerator (CLA) using superconducting cavities compatible with a future upgrade towards high repetition rate, for the investigations of the advanced FEL schemes; and a 0.4 - 1 GeV Laser Wake Field Accelerator (LWFA), to be qualified in view of FEL application, in the single spike or seeded regime. Two pilot user experiments for timeresolved studies of isolated species and solid state matter dynamics will take benefit of LUNEX5 FEL radiation and provide feedback of the performance of the different schemes under real user conditions

    Toward interoperable bioscience data

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Genetics 44 (2012): 121-126, doi:10.1038/ng.1054.To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open 'data commoning' culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared 'Investigation-Study-Assay' framework to support that vision.The authors also acknowledge the following funding sources in particular: UK Biotechnology and Biological Sciences Research Council (BBSRC) BB/I000771/1 to S.-A.S. and A.T.; UK BBSRC BB/I025840/1 to S.-A.S.; UK BBSRC BB/I000917/1 to D.F.; EU CarcinoGENOMICS (PL037712) to J.K.; US National Institutes of Health (NIH) 1RC2CA148222-01 to W.H. and the HSCI; US MIRADA LTERS DEB-0717390 and Alfred P. Sloan Foundation (ICoMM) to L.A.-Z.; Swiss Federal Government through the Federal Office of Education and Science (FOES) to L.B. and I.X.; EU Innovative Medicines Initiative (IMI) Open PHACTS 115191 to C.T.E.; US Department of Energy (DOE) DE-AC02- 06CH11357 and Arthur P. Sloan Foundation (2011- 6-05) to J.G.; UK BBSRC SysMO-DB2 BB/I004637/1 and BBG0102181 to C.G.; UK BBSRC BB/I000933/1 to C.S. and J.L.G.; UK MRC UD99999906 to J.L.G.; US NIH R21 MH087336 (National Institute of Mental Health) and R00 GM079953 (National Institute of General Medical Science) to A.L.; NIH U54 HG006097 to J.C. and C.E.S.; Australian government through the National Collaborative Research Infrastructure Strategy (NCRIS); BIRN U24-RR025736 and BioScholar RO1-GM083871 to G.B. and the 2009 Super Science initiative to C.A.S
    • 

    corecore