39 research outputs found

    Drug development in Parkinson's disease: From emerging molecules to innovative drug delivery systems

    Get PDF
    Current treatments for Parkinson’s disease (PD) are aimed at addressing motor symptoms but there is no therapy focused on modifying the course of the disease. Successful treatment strategies have been so far limited and brain drug delivery remains a major challenge that restricts its treatment. This review provides an overview of the most promising emerging agents in the field of PD drug discovery, discussing improvements that have been made in brain drug delivery for PD. It will be shown that new approaches able to extend the length of the treatment, to release the drug in a continuous manner or to cross the blood brain barrier and target a specific region are still needed. Overall, the results reviewed here show that there is an urgent need to develop both symptomatic and disease-modifying treatments, giving priority to neuroprotective treatments. Promising perspectives are being provided in this field by rasagiline and by neurotrophic factors like glial cell line-derived neurotrophic factor. The identification of disease-relevant genes has also encouraged the search for disease-modifying therapies that function by identifying molecularly-targeted drugs. The advent of new molecular and cellular targets like α-synuclein, leucine-rich repeat serine/threonine protein kinase 2 or parkin, among others, will require innovative delivery therapies. In this regard, drug delivery systems (DDS) have shown great potential for improving the efficacy of conventional and new PD therapy and reducing its side effects. The new DDS discussed here, which include microparticles, nanoparticles and hydrogels among others, will probably open up possibilities that extend beyond symptomatic relief. However, further work needs to be done before DDS become a therapeutic option for PD patients

    Brain drug delivery systems for neurodegenerative disorders

    Get PDF
    Neurodegenerative disorders (NDs) are rapidly increasing as population ages. However, successful treatments for NDs have so far been limited and drug delivery to the brain remains one of the major challenges to overcome. There has recently been growing interest in the development of drug delivery systems (DDS) for local or systemic brain administration. DDS are able to improve the pharmacological and therapeutic properties of conventional drugs and reduce their side effects. The present review provides a concise overview of the recent advances made in the field of brain drug delivery for treating neurodegenerative disorders. Examples include polymeric micro and nanoparticles, lipidic nanoparticles, pegylated liposomes, microemulsions and nanogels that have been tested in experimental models of Parkinson’s, Alzheimer’s and Hungtinton’s disease. Overall, the results reviewed here show that DDS have great potential for NDs treatment

    Terapias neuroprotectoras y neurorestauradoras en el tratamiento de la enfermedad de Parkinson

    Get PDF
    Parkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease. Current therapies are symptomatic and, although these therapies are efficacious during the early stages of the disease, they present important side effects when they are used for a long time. The ideal therapy would be the one that would slow down or stop the progression of the disease. This can be achieved, for instance, with neuroprotective and neurorestorative therapies. Among them, cell therapy and therapy with trophic factors such as glial cell line derived neurotrophic factor (GDNF) are the most challenging and promising ones for the scientific community. Although the use of GDNF as a treatment for Parkinson s disease was proposed several years ago, it is necessary to develop alternative strategies to deliver GDNF appropriately to concrete areas of the brain. Here, the use of microspheres as the most suitable tool for the administration of this neurotrophic factor is discussed

    Sustained release of bioactive glycosylated glial cell-line derived neurotrophic factor from biodegradable polymeric microspheres

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF), a potent neurotrophic factor for dopaminergic neurons, appeared as a promising candidate for treating Parkinson's disease. GDNF microencapsulation could ensure protection against degradation due to the fragile nature of the protein. Poly(lactide-co-glycolide) (PLGA) microparticles loaded with recombinant glycosylated GDNF obtained in a mammalian cell line were prepared by TROMS, a semi-industrial technique capable of encapsulating fragile molecules maintaining their native properties. The effects of several parameters as PLGA copolymer type, PEG 400 quantity co-encapsulated with GDNF or drug loading, on the properties of the particles were investigated. Microparticles showed a mean diameter between 8 and 30 ÎŒm, compatible with their stereotaxic implantation. The drug entrapment efficiency ranged from 50.6 to 100% depending on the microsphere composition. GDNF was better encapsulated using hydrophilic polymers with high molecular weight such as RG 503H. In vitro drug release was influenced by the polymer type as well as by the amount of PEG 400 co-encapsulated with GDNF. Microparticles prepared using PLGA RG 503H released 67% of the total protein content within 40 days. Moreover, very low concentrations of poly (vinyl alcohol) were detected after microparticles washing and freeze-drying. Finally, a PC-12 bioassay demonstrated that the in vitro GDNF released was bioactive

    Long-term neuroprotection and neurorestoration by glial cell-derived neurotrophic factor microspheres for the treatment of parkinson's disease

    Get PDF
    BACKGROUND: Glial cell-derived neurotrophic factor is a survival factor for dopaminergic neurons and a promising candidate for the treatment of Parkinson's disease. However, the delivery issue of the protein to the brain still remains unsolved. Our aim was to investigate the effect of long-term delivery of encapsulated glial cell-derived neurotrophic factor within microspheres. METHODS: A single dose of microspheres containing 2.5 Όg of glial cell-derived neurotrophic factor was implanted intrastriatally in animals 2 weeks after a 6-hydroxydopamine lesion. RESULTS: The amphetamine test showed a complete behavioral recovery after 16 weeks of treatment, which was maintained until the end of the study (week 30). This effect was accompanied by an increase in dopaminergic striatal terminals and neuroprotection of dopaminergic neurons. CONCLUSIONS: The main achievement was the long-term neurorestoration in parkinsonian animals induced by encapsulated glial cell-derived neurotrophic factor, suggesting that microspheres may be considered as a means to deliver glial cell-derived neurotrophic factor for Parkinson's disease treatment. © 2011 Movement Disorder Society

    Production of highly pure human glycosylated GDNF in a mammalian cell line

    Get PDF
    The administration of glial cell line-derived neurotrophic factor (GDNF) has emerged as a promising strategy for the treatment of several diseases of the nervous system as Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury and nerve regeneration as well as ocular diseases and drug addictions. A procedure for the purification of human recombinant glycosylated GDNF using a mammalian expression system as the source of the protein is discussed in the present paper. The neurotrophic factor was purified using cation exchange chromatography and gel filtration. A human cell line was chosen as the source of therapeutic protein, since a recombinant protein with a structure and glycosylation pattern equivalent to the native form is desirable for its prospective therapeutic utilization. The activity of the highly pure protein obtained was confirmed with a cell-based bioassay. The purified protein is suitable for its in vivo evaluation in animals and for possible subsequent clinical application

    Effective GDNF brain delivery using microspheres-A promising strategy for Parkinson’s disease

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF) has shown promise in the treatment of neurodegenerative disorders of basal ganglia origin such us Parkinson's disease (PD). In this study, we investigated the neurorestorative effect of controlled GDNF delivery using biodegradable microspheres in an animal model with partial dopaminergic lesion. Microspheres were loaded with N-glycosylated recombinant GDNF and prepared using the Total Recirculation One-Machine System (TROMS). GDNF-loaded microparticles were unilaterally injected into the rat striatum by stereotaxic surgery two weeks after a unilateral partial 6-OHDA nigrostriatal lesion. Animals were tested for amphetamine-induced rotational asymmetry at different times and were sacrificed two months after microsphere implantation for immunohistochemical analysis. The putative presence of serum IgG antibodies against rat glycosylated GDNF was analyzed for addressing safety issues. The results demonstrated that GDNF-loaded microspheres, improved the rotational behavior induced by amphetamine of the GDNF-treated animals together with an increase in the density of TH positive fibers at the striatal level. The developed GDNF-loaded microparticles proved to be suitable to release biologically active GDNF over up to 5 weeks in vivo. Furthermore, none of the animals developed antibodies against GDNF demonstrating the safety of glycosylated GDNF use

    Endothelial NOX5 expression modulates thermogenesis and lipolysis in mice fed with a high-fat diet and 3T3-L1 adipocytes through an interleukin-6 dependent mechanism

    Get PDF
    Obesity is a global health issue associated with the development of metabolic syndrome, which correlates with insulin resistance, altered lipid homeostasis, and other pathologies. One of the mechanisms involved in the development of these pathologies is the increased production of reactive oxygen species (ROS). One of the main producers of ROS is the family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, among which NOX5 is the most recently discovered member. The aim of the present work is to describe the effect of endothelial NOX5 expression on neighboring adipose tissue in obesity conditions by using two systems. An in vivo model based on NOX5 conditional knock-in mice fed with a high-fat diet and an in vitro model developed with 3T3-L1 adipocytes cultured with conditioned media of endothelial NOX5-expressing bEnd.3 cells, previously treated with glucose and palmitic acid. Endothelial NOX5 expression promoted the expression and activation of specific markers of thermogenesis and lipolysis in the mesenteric and epididymal fat of those mice fed with a high-fat diet. Additionally, the activation of these processes was derived from an increase in IL-6 production as a result of NOX5 activity. Accordingly, 3T3-L1 adipocytes treated with conditioned media of endothelial NOX5-expressing cells, presented higher expression of thermogenic and lipolytic genes. Moreover, endothelial NOX5-expressing bEnd.3 cells previously treated with glucose and palmitic acid also showed interleukin (IL-6) production. Finally, it seems that the increase in IL-6 stimulated the activation of markers of thermogenesis and lipolysis through phosphorylation of STAT3 and AMPK, respectively. In conclusion, in response to obesogenic conditions, endothelial NOX5 activity could promote thermogenesis and lipolysis in the adipose tissue by regulating IL-6 production

    Nanosistemas a base de poliésteres

    Get PDF
    Amplia presentacion de los: Nanosistemas a base de poliésteres, desarrollando todas las posibilidades de estos compuestos que constituyen tal vez los polímeros mas frecuentemente utilizados por estar, algunos de ellos, autorizado su empleo por las agen- cias regulatorias

    Induction of Cyclooxygenase-2 by Overexpression of the Human NADPH Oxidase 5 (NOX5) Gene in Aortic Endothelial Cells

    Get PDF
    Oxidative stress is a main molecular mechanism that underlies cardiovascular diseases. A close relationship between reactive oxygen species (ROS) derived from NADPH oxidase (NOX) activity and the prostaglandin (PG) biosynthesis pathway has been described. However, little information is available about the interaction between NOX5 homolog-derived ROS and the PG pathway in the cardiovascular context. Our main goal was to characterize NOX5-derived ROS effects in PG homeostasis and their potential relevance in cardiovascular pathologies. For that purpose, two experimental systems were employed: an adenoviral NOX5-ÎČ overexpression model in immortalized human aortic endothelial cells (TeloHAEC) and a chronic infarction in vivo model developed from a conditional endothelial NOX5 knock-in mouse. NOX5 increased cyclooxygenase-2 isoform (COX-2) expression and prostaglandin E2 (PGE2) production through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ÎșB) in TeloHAEC. Protein kinase C (PKC) activation and intracellular calcium level (Ca++) mobilization increased ROS production and NOX5 overexpression, which promoted a COX-2/PGE2 response in vitro. In the chronic infarction model, mice encoding endothelial NOX5 enhanced the cardiac mRNA expression of COX-2 and PGES, suggesting a COX-2/PGE2 response to NOX5 presence in an ischemic situation. Our data support that NOX5-derived ROS may modulate the COX-2/PGE2 axis in endothelial cells, which might play a relevant role in the pathophysiology of heart infarction
    corecore