845 research outputs found

    A green approach to clean iron stains from marble surfaces

    Get PDF
    AbstractIn the field of cultural heritage restoration, the removal of iron corrosion stains is a difficult problem to deal with, especially in stone materials. Many studies in recent years have been aimed at finding simple and reliable methods using non-toxic chelating compounds. The search for natural non-toxic compounds is therefore of great relevance, especially in the conservation of cultural heritage, where the use of toxic chemical compounds often involves risks for the environment and human health. Following this trend, the purpose of this preliminary work was to verify the use of two proteins, Lactotransferrin (Ltf) and Ovotransferrin (Ovt), for the removal of iron-based stains on marble surfaces. The two proteins, whose high affinity for iron "in vivo" has been widely documented, were extracted from their natural matrices. The protein extracts were then immobilized using a common cellulose pulp. The poultices obtained were spread on the surfaces of artificially stained marble specimens and, after a set time, were easily removed. The effectiveness of the removal, visually evident, was detected by spectrocolorimetry and image analysis. The surface analyses, before and after the treatment, carried out by X-ray photoelectron spectroscopy (XPS), confirmed that both proteins have a selective and effective complexing capacity for the ferric ions of rust stains

    The bio-patina on a hypogeum wall of the Matera-Sassi rupestrian church "San Pietro Barisano" before and after treatment with glycoalkaloids

    Get PDF
    The investigation focused on the deterioration of the walls in the hypogeum of "San Pietro Barisano" rupestrian church, located in the Matera-Sassi (Southern Italy), one of the UNESCO World Heritage sites. The study evaluated the biocide activity of a mixture of natural glycoalkaloids (G.A.s) extracted from the unripe fruit of Solanum nigrum and applied to clean a hypogeum wall surface in the church affected by green patinas. The analyzed patina, collected before treatment and, at pre-established times, after treatment, showed changes in chemical composition detected by XPS, accompanied by visible discoloration and biological activity variation. The biocidal action of the glycoalkaloids mixture, directly employed on the wall surface, was effective after about four weeks for most patina colonizers but not for the fungal species that can migrate and survive in the porosities of the calcarenite. Consequently, the cleaning procedure requires the integration of fungicidal actions, combined with the consolidation of the surfaces, to obtain complete bioremediation and avoid subsequent biological recolonization. SEM images and associated microanalysis of pretreated green patina have revealed the biocalcogenity of some autochthonous microorganisms, thus preluding to their eventual isolation and reintroduction on the wall surface to act as consolidants once the bio-cleaning phase has been completed

    Reply

    Get PDF

    Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense

    Get PDF
    Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalytic mechanism with a rate constant of 0.0346 s(-1). The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 +/- 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue

    A seasonal periodicity in relapses of multiple sclerosis? A single-center, population-based, preliminary study conducted in Bologna, Italy

    Get PDF
    Fabrizio Salvi, Ilaria Bartolomei, Angelo Lorusso, and Elena Barbarossa are with the Department of Neuroscience, Multiple Sclerosis Center, Bellaria Hospital, Bologna, Italy -- Michael H. Smolensky is with the Department of Biomedical Engineering, the University of Texas at Austin, USA -- Ann Maria Malagoni, Paolo Zamboni, and Roberto Manfredini are with the Vascular Diseases Center, University of Ferrara, Italy -- Roberto Manfredini is with the Department of Internal Medicine, Hospital of the Delta, Azienda UnitĂ  Sanitaria Locale, Ferrara, Italy and the Department of Clinical and Experimental Medicine, Clinica Medica and Vascular Diseases Center, University of Ferrara, ItalyBackground: Temporal, i.e., 24-hour, weekly, and seasonal patterns in the occurrence of acute cardiovascular and cerebrovascular events are well documented; however, little is known about temporal, especially seasonal, variation in multiple sclerosis (MS) and its relapses. This study investigated, by means of a validated chronobiological method, whether severe relapses of MS, ones requiring medical specialty consultation, display seasonal differences, and whether they are linked with seasonal differences in local meteorological variables. Results: We considered 96 consecutive patients with severe MS relapse (29 men, 67 women, mean age 38.5 ± 8.8 years), referred to the Multiple Sclerosis Center, Bellaria Hospital, Bologna, Italy, between January 1, 2007 and December 31, 2008. Overall, we analyzed 164 relapses (56 in men, 108 in women; 115 in patients aged < 40 years, 49 in patients ≥40 years). Relapses were more frequent in May and June (12.2% each) and the least frequent in September (3.7%). Chronobiological analysis showed a biphasic pattern (major peak in May-June, secondary peak in November-December, p = 0.030). Analysis of monthly mean meteorological data showed a significant seasonal pattern in ambient temperature (peak in July, p < 0.001), relative humidity (peak in January, p < 0.001), and wind speed (peak in June, p = 0.011). Conclusions: In this Italian setting we found a biphasic pattern, peaks in spring and autumn, in severe MS relapses requiring medical consultation by doctors of the MS specialty center apparently unrelated to meteorological variables. Confirmations of the findings on larger multi-center populations residing in different climatic conditions are needed to further explore the potential seasonality of MS relapses and associated environmental triggers.Biomedical [email protected]

    A Photochromic Azobenzene Peptidomimetic of a β-Turn Model Peptide Structure as a Conformational Switch

    Get PDF
    The insertion of azobenzene moiety in complex molecular protein or peptide systems can lead to molecular switches to be used to determine kinetics of folding/unfolding properties of secondary structures, such as α-helix, β-turn, or β-hairpin. In fact, in azobenzene, absorption of light induces a reversible trans ↔ cis isomerization, which in turns generates a strain or a structure relaxation in the chain that causes peptide folding/unfolding. In particular azobenzene may permit reversible conformational control of hairpin formation. In the present work a synthetic photochromic azobenzene amino acid derivative was incorporated as a turn element to modify the synthetic peptide [Pro7,Asn8,Thr10]CSF114 previously designed to fold as a type I β-turn structure in biomimetic HFA/water solution. In particular, the P-N-H fragment at positions 7–9, involved in a β-hairpin, was replaced by an azobenzene amino acid derivative (synthesized ad hoc) to investigate if the electronic properties of the novel peptidomimetic analog could induce variations in the isomerization process. The absorption spectra of the azopeptidomimetic analog of the type I β-turn structure and of the azobenzene amino acid as control were measured as a function of the irradiation time exciting into the respective first ππ* and nπ* transition bands. Isomerization of the azopeptidomimetic results strongly favored by exciting into the ππ* transition. Moreover, conformational changes induced by the cis↔ trans azopeptidomimetic switch were investigated by NMR in different solvents

    XPS characterization of (copper-based) coloured stains formed on limestone surfaces of outdoor Roman monuments

    Get PDF
    Limestone basements holding bronzes or other copper alloys artefacts such as sculptures, decorations and dedicatory inscriptions are frequently met both in modern and ancient monuments. In outdoor conditions, such a combination implies the corrosion products of the copper based alloy, directly exposed to rainwater, will be drained off and migrate through the porous surfaces, forming stains of different colours and intensities, finally causing the limestone structures to deteriorate
    • …
    corecore