59 research outputs found

    Insect cells are superior to Escherichia coli in producing malaria proteins inducing IgG targeting PfEMP1 on infected erythrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The PFD1235w <it>Plasmodium falciparum </it>erythrocyte membrane protein 1 (PfEMP1) antigen is associated with severe malaria in children and can be expressed on the surface of infected erythrocytes (IE) adhering to ICAM1. However, the exact three-dimensional structure of this PfEMP1 and its surface-exposed epitopes are unknown. An insect cell and <it>Escherichia coli </it>based system was used to express single and double domains encoded by the <it>pfd1235w var </it>gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w PfEMP1 antigen expressed on 3D7<sub>PFD1235w</sub>-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed.</p> <p>Methods</p> <p>The recombinant proteins were run on SDS-PAGE and Western blots for quantification and size estimation. Insect cell and <it>E. coli</it>-produced recombinant proteins were coupled to a bead-based Luminex assay to measure the plasma antibody reactivity of 180 samples collected from Tanzanian individuals. The recombinant proteins used for immunization of rats and antisera were also tested by flow cytometry for their ability to surface label 3D7<sub>PFD1235w</sub>-IE.</p> <p>Results</p> <p>All seven pAcGP67A constructs were successfully expressed as recombinant protein in baculovirus-infected insect cells and subsequently produced to a purity of 60-97% and a yield of 2-15 mg/L. By comparison, only three of seven pET101/D-TOPO constructs expressed in the <it>E. coli </it>system could be produced at all with purity and yield ranging from 3-95% and 6-11 mg/L. All seven insect cell, but only two of the <it>E. coli </it>produced proteins induced antibodies reactive with native PFD1235w expressed on 3D7<sub>PFD1235w</sub>-IE. The recombinant proteins were recognized in an age- and transmission intensity-dependent manner by antibodies from 180 Tanzanian individuals in a bead-based Luminex assay.</p> <p>Conclusions</p> <p>The baculovirus based insect cell system was distinctly superior to the <it>E. coli </it>expression system in producing a larger number of different recombinant PFD1235w protein domains and these were significantly easier to purify at a useful yield. However, proteins produced in both systems were able to induce antibodies in rats, which can recognize the native PFD1235w on the surface of IE.</p

    An Analysis of the Binding Characteristics of a Panel of Recently Selected ICAM-1 Binding Plasmodium falciparum Patient Isolates.

    Get PDF
    The basis of severe malaria pathogenesis in part includes sequestration of Plasmodium falciparum-infected erythrocytes (IE) from the peripheral circulation. This phenomenon is mediated by the interaction between several endothelial receptors and one of the main parasite-derived variant antigens (PfEMP1) expressed on the surface of the infected erythrocyte membrane. One of the commonly used host receptors is ICAM-1, and it has been suggested that ICAM-1 has a role in cerebral malaria pathology, although the evidence to support this is not conclusive. The current study examined the cytoadherence patterns of lab-adapted patient isolates after selecting on ICAM-1. We investigated the binding phenotypes using variant ICAM-1 proteins including ICAM-1Ref, ICAM-1Kilifi, ICAM-1S22/A, ICAM-1L42/A and ICAM-1L44/A using static assays. The study also examined ICAM-1 blocking by four anti-ICAM-1 monoclonal antibodies (mAb) under static conditions. We also characterised the binding phenotypes using Human Dermal Microvascular Endothelial Cells (HDMEC) under flow conditions. The results show that different isolates have variant-specific binding phenotypes under both static and flow conditions, extending our previous observations that this variation might be due to variable contact residues on ICAM-1 being used by different parasite PfEMP1 variants

    A method for visualizing surface-exposed and internal PfEMP1 adhesion antigens in Plasmodium falciparum infected erythrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The insertion of parasite antigens into the host erythrocyte membrane and the structure and distribution of <it>Plasmodium falciparum </it>adhesion receptors on that membrane are poorly understood. Laser scanning confocal microscopy (LSCM) and a novel labelling and fixation method have been used to obtain high resolution immuno-fluorescent images of erythrocyte surface PfEMP1 and internal antigens which allow analysis of the accumulation of PfEMP1 on the erythrocyte membrane during asexual development.</p> <p>Methods</p> <p>A novel staining technique has been developed which permits distinction between erythrocyte surface PfEMP1 and intracellular PfEMP1, in parasites whose nuclear material is exceptionally well resolved. Primary antibody detection by fluorescence is carried out on the live parasitized erythrocyte. The surface labelled cells are then fixed using paraformaldehyde and permeabilized with a non-ionic detergent to permit access of antibodies to internal parasite antigens. Differentiation between surface and internal antigens is achieved using antibodies labelled with different fluorochromes and confocal microscopy</p> <p>Results</p> <p>Surface exposed PfEMP1 is first detectable by antibodies at the trophozoite stage of intracellular parasite development although the improved detection method indicates that there are differences between different laboratory isolates in the kinetics of accumulation of surface-exposed PfEMP1.</p> <p>Conclusion</p> <p>A sensitive method for labelling surface and internal PfEMP1 with up to three different fluorochromes has been developed for laser scanning confocal optical microscopy and the analysis of the developmental expression of malaria adhesion antigens.</p

    Radiofrequency Electromagnetic Fields Cause Non-Temperature-Induced Physical and Biological Effects in Cancer Cells

    Get PDF
    Non-temperature-induced effects of radiofrequency electromagnetic fields (RF) have been controversial for decades. Here, we established measurement techniques to prove their existence by investigating energy deposition in tumor cells under RF exposure and upon adding amplitude modulation (AM) (AMRF). Using a preclinical device LabEHY-200 with a novel in vitro applicator, we analyzed the power deposition and system parameters for five human colorectal cancer cell lines and measured the apoptosis rates in vitro and tumor growth inhibition in vivo in comparison to water bath heating. We showed enhanced anticancer effects of RF and AMRF in vitro and in vivo and verified the non-temperature-induced origin of the effects. Furthermore, apoptotic enhancement by AM was correlated with cell membrane stiffness. Our findings not only provide a strategy to significantly enhance non-temperature-induced anticancer cell effects in vitro and in vivo but also provide a perspective for a potentially more effective tumor therapy

    Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria

    Get PDF
    Cerebral malaria is a deadly outcome of infection by Plasmodium falciparum, occurring when parasite-infected erythrocytes accumulate in the brain. These erythrocytes display parasite proteins of the PfEMP1 family that bind various endothelial receptors. Despite the importance of cerebral malaria, a binding phenotype linked to its symptoms has not been identified. Here, we used structural biology to determine how a group of PfEMP1 proteins interacts with intercellular adhesion molecule 1 (ICAM-1), allowing us to predict binders from a specific sequence motif alone. Analysis of multiple Plasmodium falciparum genomes showed that ICAM-1-binding PfEMP1s also interact with endothelial protein C receptor (EPCR), allowing infected erythrocytes to synergistically bind both receptors. Expression of these PfEMP1s, predicted to bind both ICAM-1 and EPCR, is associated with increased risk of developing cerebral malaria. This study therefore reveals an important PfEMP1-binding phenotype that could be targeted as part of a strategy to prevent cerebral malaria

    Plasmodium falciparum erythrocyte membrane protein 1 variants induce cell swelling and disrupt the blood-brain barrier in cerebral malaria.

    Get PDF
    Cerebral malaria (CM) is caused by the binding of Plasmodium falciparum-infected erythrocytes (IEs) to the brain microvasculature, leading to inflammation, vessel occlusion, and cerebral swelling. We have previously linked dual intercellular adhesion molecule-1 (ICAM-1)- and endothelial protein C receptor (EPCR)-binding P. falciparum parasites to these symptoms, but the mechanism driving the pathogenesis has not been identified. Here, we used a 3D spheroid model of the blood-brain barrier (BBB) to determine unexpected new features of IEs expressing the dual-receptor binding PfEMP1 parasite proteins. Analysis of multiple parasite lines shows that IEs are taken up by brain endothelial cells in an ICAM-1-dependent manner, resulting in breakdown of the BBB and swelling of the endothelial cells. Via ex vivo analysis of postmortem tissue samples from CM patients, we confirmed the presence of parasites within brain endothelial cells. Importantly, this discovery points to parasite ingress into the brain endothelium as a contributing factor to the pathology of human CM

    Surface Co-Expression of Two Different PfEMP1 Antigens on Single Plasmodium falciparum-Infected Erythrocytes Facilitates Binding to ICAM1 and PECAM1

    Get PDF
    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var gene is expressed per cell at a time. We measured var mRNA transcript levels by real-time Q-PCR, analysed var gene transcripts by single-cell FISH and directly compared these with PfEMP1 antigen surface expression and cytoadhesion in three different antibody-selected P. falciparum 3D7 sub-lines using live confocal microscopy, flow cytometry and in vitro adhesion assays. We found that one selected parasite sub-line simultaneously expressed two different var genes as surface antigens, on single IE. Importantly, and of physiological relevance to adhesion and malaria pathogenesis, this parasite sub-line was found to bind both CD31/PECAM1 and CD54/ICAM1 and to adhere twice as efficiently to human endothelial cells, compared to infected cells having only one PfEMP1 variant on the surface. These new results on PfEMP1 antigen expression indicate that a re-evaluation of the molecular mechanisms involved in P. falciparum adhesion and of the accepted paradigm of absolutely mutually exclusive var gene transcription is required
    corecore