2,908 research outputs found

    Intuition in Healthcare Communication Practices: Initial Findings from a Qualitative Inquiry

    Get PDF
    This brief paper reports on how healthcare providers negotiate stages of care and communication by using intuition. This focus shifts attention away from the product-patient records-and towards the process of medical communication. To support this claim, the paper presents preliminary findings from qualitative analysis of two individual ethnographic research projects with live-action clinical nursing simulations and emergency medical services. Using a grounded theory analysis that identified intuitive moments in the writing practices of healthcare providers, this brief paper demonstrates how intuition manifests in all five stages of care-anticipate, assess, plan, act and reassess, and document-and grounds medical assessment and decision making. Analysis suggests three takeaways for healthcare communicators and educators: 1. intuitive work supports patient specific and responsive care; 2. coding and highlighting mediate patient sense; and 3. recognizing and valuing patient sense is a learned skill. The paper concludes with suggestions for reflective activities that could support incorporating intuition into healthcare communication pedagogy

    Quasiparticle light elements and quantum condensates in nuclear matter

    Full text link
    Nuclei in dense matter are influenced by the medium. In the cluster mean field approximation, an effective Schr\"odinger equation for the AA-particle cluster is obtained accounting for the effects of the surrounding medium, such as self-energy and Pauli blocking. Similar to the single-baryon states (free neutrons and protons), the light elements (2≤A≤42 \le A \le 4, internal quantum state ν\nu) are treated as quasiparticles with energies EA,ν(P;T,nn,np)E_{A,\nu}(P; T, n_n,n_p) that depend on the center of mass momentum P⃗\vec P, the temperature TT, and the total densities nn,npn_n,n_p of neutrons and protons, respectively. We consider the composition and thermodynamic properties of nuclear matter at low densities. At low temperatures, quartetting is expected to occur. Consequences for different physical properties of nuclear matter and finite nuclei are discussed.Comment: 5 pages, 1 figure, 2 table

    Designing Writing for Health and Medicine : Course Arcs, Anchors, and Action

    Get PDF
    This article details how we developed a hybrid rhetoric of health and medicine and technical communication writing course in response to a call for a health sciences writing course. We anticipate that other institutions may be experiencing similar demand for these courses and thus introduce our process and course design as models for meeting this growing curricular need

    Comparison of surfactant mass transfer with drop formation times from dynamic interfacial tension measurements in microchannels

    Get PDF
    Dynamic interfacial tension was studied experimentally during drop formation in a flow-focusing microchannel. A low viscosity silicone oil (4.6 mPa s) was the continuous phase and a mixture of 48% w/w water and 52% w/w glycerol was the dispersed phase. An anionic (sodium dodecylsulfate, SDS), a cationic (dodecyltrimethylammonium bromide, DTAB) and a non-ionic (Tritonâ„¢ X-100, TX100) surfactant were added in the dispersed phase, at concentrations below and above the critical micelle concentration (CMC). For SDS and DTAB the drop size against continuous phase flowrate curves initially decreased with surfactant concentration and then collapsed to a single curve at concentrations above CMC. For TX100 the curves only collapsed at surfactant concentrations 8.6 times the CMC. From the collapsed curves a correlation of drop size with capillary number was derived, which was used to calculate the dynamic interfacial tension at times as low as 3 ms. The comparison of the surfactant mass transport and adsorption times to the interface against the drop formation times indicated that surfactant adsorption also contributes to the time required to reach equilibrium interfacial tension. Criteria were proposed for drop formation times to ensure that equilibrium interfacial tension has been reached and does not affect the drop formation

    Effect of D-Mannitol on the Microstructure and Rheology of Non-Aqueous Carbopol Microgels

    Get PDF
    D-mannitol is a common polyol that is used as additive in pharmaceutical and personal care product formulations. We investigated its effect on the microstructure and rheology of novel non-aqueous Carbopol dispersions employing traditional and time-resolved rheological analysis. We considered two types of sample, (i) fresh (i.e., mannitol completely dissolved in solution) and aged (i.e., visible in crystalline form). The analysis of the intracycle rheological transitions that were observed for different samples revealed that, when completely dissolved in solution, mannitol does not alter the rheological behaviour of the Carbopol dispersions. This highlights that the chemical similarity of the additive with the molecules of the surrounding solvent allows preserving the swollen dimension and interparticle interactions of the Carbopol molecules. Conversely, when crystals are present, a hierarchical structure forms, consisting of a small dispersed phase (Carbopol) agglomerated around a big dispersed phase (crystals). In keeping with this microstructural picture, as the concentration of Carbopol reduces, the local dynamics of the crystals gradually start to control the integrity of the microstructure. Rheologically, this results in a higher elasticity of the suspensions at infinitesimal deformations, but a fragile yielding process at intermediate strains

    Outer structure of the Galactic warp and flare: explaining the Canis Major over-density

    Full text link
    (Abridged) We derive the structure of the Galactic stellar Warp and Flare using 2MASS RC and RGB stars, selected at mean heliocentric distances of 3, 7 and 17 kpc. Our results are: (i) a clear stellar warp signature is derived for the 3 selected rings; (ii) the derived stellar warp is consistent (both in amplitude and phase-angle) with that for the Galactic interstellar dust and HI gas; (iii) the Sun seems not to fall on the line of nodes. The stellar warp phase-angle orientation (+15 degrees) is close to the orientation angle of the Galactic bar and this produces an asymmetric warp for the inner rings; (iv) a Northern/Southern warp symmetry is observed only for the ring at 17 kpc; (v) treating a mixture of thin and thick disk populations we trace the disk flaring and derive a constant scale-height (~0.65 kpc) within R(GC)~15 kpc. Further out, the disk flaring increase gradually reaching a mean scale-height of ~1.5 kpc at R(GC)~23 kpc; and (vi) these results provide further robust evidence that there is no disk radial truncation at R(GC)~14 kpc. In the particular case of the Canis Major over-density we confirm its coincidence with the Southern stellar maximum warp occurring near l=240. We present evidence to conclude that all observed parameters (e.g. number density, radial velocities, proper motion etc) of CMa are consistent with it being a normal Milky Way outer-disk population, thereby leaving no justification for a more complex interpretations of its origin. The present analysis does not provide a conclusive test of the structure or origin of the Monoceros Ring. Nevertheless, we show that a warped flared Milky Way contributes significantly at the locations of the Monoceros Ring.Comment: 25 pages, 22 figures, accepted for publication in A&A. A higher resolution pdf file is available at http://wwwuser.oat.ts.astro.it/zaggia/public_html/warp

    On the closure problem of the effective stress in the Eulerian-Eulerian and mixture modeling approaches for the simulation of liquid-particle suspensions

    Get PDF
    © 2019 Author(s). We address the closure problem of the phasic effective stress tensors in the Eulerian-Eulerian and mixture models, considering suspensions of identical particles dispersed in Newtonian liquids. First, after briefly describing the modeling approaches, we review the key mechanisms generating phasic stress and discuss the shortcomings of some constitutive expressions in reproducing important experimental observations. For dilute suspensions, these include the mixture viscosity rise with solid concentration whilst for dense suspensions, the occurrence of particle migration and the change of mixture rheology from Newtonian to non-Newtonian. We then use computational fluid dynamics simulations to compare results based on various stress tensor closures. In a first case study, the simulation results of a laminar flow in a horizontal pipe of a dilute suspension of particles dispersed in a Newtonian liquid are compared to experimental data obtained from the literature. We show that both the Eulerian-Eulerian and mixture models can predict pressure drops accurately but only if they are coupled with suitable experimental closures for the mixture rheology. In a second case study, we simulate the laminar flow of a dense suspension of identical particles dispersed in a Newtonian liquid through an abrupt expansion. We show that the particle concentration profile in the upstream tube, which develops owing to shear-induced particle migration, strongly affects the flow patterns downstream of the expansion. This migration must be modeled via an appropriate closure for the solid effective stress tensor; this allows capturing the sophisticated flow patterns in the expansion section

    Viscoelastic flow instabilities in static mixers: Onset and effect on the mixing efficiency

    Get PDF
    Elastic instabilities are identified as flow instabilities occurring in the presence of low inertial effects, induced by the combination of strong elastic forces with nonlinearities of the flow. In continuous flow laminar mixing applications, the onset of these instabilities is likely to occur in the window of applied flow rates; therefore, it is important to understand the effects of their onset on the process efficiency. In this work, we investigated experimentally the onset of elastic instabilities in two tubular static mixers with different geometric features, i.e., the Kenics helical mixer and the SMB-R mixer, the latter characterized by a double X-shaped bar geometry. We obtained concentration maps at various mixer lengths by means of planar laser induced fluorescence techniques. To deduce a generalized effect of the fluid elasticity on the mixing patterns, we tested three fluids with different rheological behavior — a Boger fluid and two shear-thinning fluids. For all cases, we observed deviations from the Newtonian benchmark as soon as the Deborah number exceeded unity, even though different transitions occurred as the mean flow rate increased. The effect of the instability on the mixing patterns strongly depended on the different kinematics induced by the two geometries: for the helical mixer, the typical lamellar structure is not recovered and the two liquid streams remain unmixed, while for the SMB-R, the concentration maps are strongly unsteady, showing temporally and spatially chaotic fluctuations of the mass fraction. In both cases, the instabilities worsen the mixing efficiency compared to the Newtonian case

    Experimental and computational fluid dynamic studies of mixing for complex oral health products

    Get PDF
    Mixing high viscous non-Newtonian fluids is common in the consumer health industry. Sometimes this process is empirical and involves many pilot plants trials which are product specific. The first step to study the mixing process is to build on knowledge on the rheology of the fluids involved. In this research a systematic approach is used to validate the rheology of two liquids: glycerol and a gel formed by polyethylene glycol and carbopol. Initially, the constitutive equation is determined which relates the viscosity of the fluids with temperature, shear rate, and concentration. The key variable for the validation is the power required for mixing, which can be obtained both from CFD and experimentally using a stirred tank and impeller of well-defined geometries at different impeller speeds. A good agreement between the two values indicates a successful validation of the rheology and allows the CFD model to be used for the study of mixing in the complex vessel geometries and increased sizes encountered during scale up
    • …
    corecore